玉米秆碳源去除地下水硝酸盐

李同燕, 李文奇, 胡伟武, 冯传平. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
引用本文: 李同燕, 李文奇, 胡伟武, 冯传平. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
Li Tongyan, Li Wenqi, Hu Weiwu, Feng Chuanping. Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in-situ remediation[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
Citation: Li Tongyan, Li Wenqi, Hu Weiwu, Feng Chuanping. Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in-situ remediation[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925

玉米秆碳源去除地下水硝酸盐

  • 基金项目:

    国家科技支撑计划项目(2012BAJ25B00)

  • 中图分类号: X523

Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in-situ remediation

  • Fund Project:
  • 摘要: 研究比较了经氢氧化钠、氨水预处理的玉米秆和玉米芯作为生物反硝化碳源时,不同氮负荷条件下的脱氮性能。结果表明,经3%氢氧化钠溶液预处理的玉米秆,在不同氮负荷下均具有较高的硝酸盐去除率,最高达到了97.17%。在原位净化模拟实验中,用该方法预处理的玉米秆作为可渗透反应墙(PRB)的填充介质,硝酸盐和总氮的去除率分别达到了89.68%和84.97%,且出水中没有亚硝酸盐氮和氨氮的积累。结果表明,经3%氢氧化钠溶液预处理的玉米秆,可以作为地下水原位净化修复的固相碳源。
  • 加载中
  • [1] 韩宁, 魏连启, 刘久荣, 等. 地下水中常见有机污染物的原位治理技术现状. 城市地质, 2009, 4(1): 22-30 Han Ning, Wei Lianqi, Liu Jiurong, et al. Progresses in the in-situ groundwater treatment technologies for organic contaminants. Urban Geology, 2009, 4(1): 22-30(in Chinese)
    [2] Wan Dongjin, Liu Huijuan, Qu Jiuhui, et al. Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification. Bioresource Technology, 2009, 100(1): 142-148
    [3] 闫素云, 匡颖, 张焕祯. 硝酸盐氮污染地下水修复技术. 环境科技, 2011, 24(S2): 7-10 Yan Suyun, Kuang Ying, Zhang Huanzhen. Remediation of groundwater polluted by nitrate nitrogen. Environmental Science and Technology, 2011, 24(S2): 7-10(in Chinese)
    [4] Allan S., Cakici H. Biological denitrification of drinking water in a slow sand filter. Journal of Hazardous Materials, 2007, 148(1-2): 253-258
    [5] Gómez M. A., Rodelas B., Sáez F., et al. Denitrifying activity of Xanthobacter autotrophicus strains isolated from a submerged fixed-film reactor. Applied Microbiology and Biotechnology, 2005, 68(5): 680-685
    [6] Schipper L. A., Vojvodić-Vuković M. Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust. Ecological Engineering, 2000, 14(3): 269-278
    [7] 刘菲, 黄园英, 何小娟. 与铁相关的几种渗透反应格栅材料性能的比较. 地学前缘, 2005, 12(S1): 170-175 Liu Fei, Huang Yuanying, He Xiaojuan. Comparison of capabilities of permeable reactive barrier (PRB) mediums related to iron. Earth Science Frontiers, 2005, 12(S1): 170-175(in Chinese)
    [8] 宋晓薇, 蒋亚萍, 陈余道, 等. 2种生物反硝化法去除地下水中硝酸盐的研究. 环境科学与技术, 2013, 36(5): 108-111 Song Xiaowei, Jiang Yaping, Chen Yudao, et al. Two biological denitrifications to remove nitrate from groundwater. Environmental Science & Technology, 2013, 36(5): 108-111(in Chinese)
    [9] Hamazah Z., Ghararah A. Biological denitrification of high nitrate water: influence of type of carbon source and nitrate loading. Journal of Environmental Science and Health, 2006, 31(7): 1651-1668
    [10] 曹相生, 钱栋, 孟雪征. 乙酸钠为碳源时的污水反硝化规律研究. 中国给水排水, 2011, 27(21): 76-79 Cao Xiangsheng, Qian Dong, Meng Xuezheng. Characteristics of denitrification process with sodium acetate as sole carbon source. China Water & Wastewater, 2011, 27(21): 76-79(in Chinese)
    [11] Rustige H., Nolde E. Nitrogen elimination from landfill leachates using an extra carbon source in subsurface flow constructed wetlands. Water Science and Technology, 2007, 56(3): 125-133
    [12] Volokita M., Abelivich A., Soares M. I. M. Denitrification of groundwater using cotton as energy source. Water Science and Technology, 1996, 34(1-2): 379-385
    [13] 金赞芳, 陈英旭, 小仓纪雄. 以纸为碳源去除地下水硝酸盐的研究. 应用生态学报, 2004, 15(12): 2359-2363 Jin Zanfang, Chen Yingxu, Ogura N. Using paper as the carbon source for groundwater nitrate removal. Chinese Journal of Applied Ecology, 2004, 15(12): 2359-2363(in Chinese)
    [14] Takahashi M., Yamada T., Tanno M., et al. Nitrate removal efficiency and bacterial community dynamics in denitrification processes using Poly (L-lactic acid) as the solid substrate. Microbes and Environments, 2011, 26(3): 212-219
    [15] 李国朝, 张新华, 陈捷, 等. 以玉米芯为碳源和生物膜载体的反硝化反应器启动性能研究. 安徽农业科学, 2011, 39(10): 5994-5995 Li Guochao, Zhang Xinhua, Chen Jie, et al. Study on the starting performance of denitrification reactor with corncob as carbon source and bofilm carrier. Journal of Anhui Agricultural Sciences, 2011, 39(10): 5994-5995(in Chinese)
    [16] 康爱彬, 程艳坤, 霍鹏, 等. 农业废弃物为碳源去除硝酸盐氮研究. 安徽农业科学, 2012, 40(6): 3510-3512 Kang Aibin, Chen Yankun, Huo Peng, et al. Study on removing nitrate with agriculture waste as carbon source. Journal of Anhui Agricultural Sciences, 2012, 40(6): 3510-3512(in Chinese)
    [17] 吕晓霞, 李海燕, 黄克瀛. 不同预处理方法对玉米芯成分的影响. 林产化工通讯, 2004, 38(2): 11-13 Lv Xiaoxia, Li Haiyan, Huang Keying. Effect of different pretreatment methods on constituents of corn-cob component. Journal of Chemical Industry of Forest Products, 2004, 38(2): 11-13(in Chinese)
    [18] Xu Xiaochen, Xue Yuan, Wang Dong, et al. The development of a reverse anammox sequencing partial nitrification process for simultaneous nitrogen and COD removal from wastewater. Bioresource Technology, 2014, 155: 427-431
    [19] Peng Yongzhen, Zhu Guibing. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006, 73(1): 15-26
    [20] Boltz J. P., Morgenroth E., Daigger G. T., et al. Method to identify potential phosphorus rate-limiting conditions in post-denitrification biofilm reactors within systems designed for simultaneous low-level effluent nitrogen and phosphorus concentrations. Water Research, 2012, 46(19): 6228-6238
    [21] Wong B. T., Lee D. J. Denitrifying sulfide removal and carbon methanogenesis in a mesophilic, methanogenic culture. Bioresource Technology, 2011, 102(12): 6673-6679
    [22] Zhao Yongjun, Zhang Hui, Xu Chao, et al. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecological Engineering, 2011, 37(10): 1546-1554
  • 加载中
计量
  • 文章访问数:  2139
  • HTML全文浏览数:  1612
  • PDF下载数:  686
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-05-13
  • 刊出日期:  2015-09-15
李同燕, 李文奇, 胡伟武, 冯传平. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
引用本文: 李同燕, 李文奇, 胡伟武, 冯传平. 玉米秆碳源去除地下水硝酸盐[J]. 环境工程学报, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
Li Tongyan, Li Wenqi, Hu Weiwu, Feng Chuanping. Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in-situ remediation[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925
Citation: Li Tongyan, Li Wenqi, Hu Weiwu, Feng Chuanping. Performances of bio-denitrfication using maize stalks as carbon source for nitrate-contaminated groundwater in-situ remediation[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4245-4251. doi: 10.12030/j.cjee.20150925

玉米秆碳源去除地下水硝酸盐

  • 1.  中国地质大学(北京)水资源与环境学院, 北京 100083
  • 2.  中国水利水电科学研究院, 北京 100044
  • 3.  中国地质大学(北京)期刊中心, 北京 100083
基金项目:

国家科技支撑计划项目(2012BAJ25B00)

摘要: 研究比较了经氢氧化钠、氨水预处理的玉米秆和玉米芯作为生物反硝化碳源时,不同氮负荷条件下的脱氮性能。结果表明,经3%氢氧化钠溶液预处理的玉米秆,在不同氮负荷下均具有较高的硝酸盐去除率,最高达到了97.17%。在原位净化模拟实验中,用该方法预处理的玉米秆作为可渗透反应墙(PRB)的填充介质,硝酸盐和总氮的去除率分别达到了89.68%和84.97%,且出水中没有亚硝酸盐氮和氨氮的积累。结果表明,经3%氢氧化钠溶液预处理的玉米秆,可以作为地下水原位净化修复的固相碳源。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回