-
近年来,基于硫酸根自由基氧化原理的活化过硫酸盐高级氧化技术受到研究人员的广泛关注[1]。相较于其他常见的氧化剂,如过氧化氢(H2O2)[2]、高锰酸盐(
$ {\rm{MnO}}_4^-$ )[3]和臭氧(O3)[4]等,过硫酸盐($ {{\rm{S}}_{\rm{2}}}{\rm{O}}_{\rm{8}}^{{\rm{2 - }}}$ )[5]因其成本低廉、高效稳定、持续时间长等优点在降解有机污染物的研究中得到越来越多的应用[6]。通过活化过硫酸盐产生更高氧化还原电位的高级氧化技术可以大幅提高污染物的去除率,在土壤地下水有机污染修复方面具有不可忽略的优势[7],尤其是针对多氯联苯(PCBs)[8]、多环芳烃(PAHs)[9]、石油烃(TPH)[10]等有机污染场地,其优势更加明显。由于过硫酸盐自身对污染物的氧化能力有限,探索不同活化方法提高过硫酸盐的污染物去除率成为研究发展的热点。有研究[7]表明,通过热[11]、碱[12]、电力[13]、超声[14]、过渡金属[15]以及紫外光[16]等手段激活过硫酸盐,体系中可以同时产生2种强氧化剂:硫酸根自由基(
$ {\rm{SO}}_{\rm{4}}^{{\rm{ - }} }\cdot$ ,E0=2.5~3.1 V)和羟基自由基(OH·,E0=2.8 V)[1]。与羟基自由基不同的是,硫酸根自由基更加稳定,它的半衰期(40 μs)远大于羟基自由基(<1 μs),可以在复杂多变环境中获得更持久的存留时间,特别是在土壤-地下水有机污染修复中,可以实现多介质输移且保持其强氧化活性[17]。为了更好地跟踪活化过硫酸盐氧化技术在全球范围内的研究趋势,本研究通过对1986—2019年以来Web of Science核心数据库中相关刊物的数量、发展趋势、研究团队(国家、机构、期刊和作者)以及文献被引频次等进行了回顾与分析;结合关键词共现关系图谱,梳理了过硫酸盐的研究热点及未来发展趋势,总结了过硫酸盐不同活化方法的特点,并系统归纳了33年以来有关过硫酸盐高级氧化法的研究动态及面临的挑战,以期为今后的相关研究提供有益参考。
基于文献计量的全球活化过硫酸盐氧化技术研究趋势分析
Global trends of activated persulfate oxidation technology based on bibliometric analysis
-
摘要: 通过激活过硫酸盐(persulfate, PS)产生硫酸根自由基是一种新兴的高级氧化技术,该方法由于无毒、高效、经济且环境友好等优势在水土污染修复中得到广泛关注。基于文献计量学和网络图分析方法,利用Web of Science核心数据库对1986—2019年以来有关过硫酸盐的文献进行回顾和梳理。使用VOSviewer(1.6.13版)软件,分析全球对过硫酸盐研究的国家、机构、作者、期刊、共引用文献及关键词等数据,并且绘制出关键词共现图谱和密度图,以分析过硫酸盐的研究历史、目前的研究热点以及发展前景。结果显示,研究热点集中在过硫酸盐的高级氧化技术、活化方法、氧化动力学和机理以及在修复土壤和地下水中的应用等。同时,基于研究热点系统归纳了过硫酸盐的活化方法及其降解污染物的实际应用,提出了当前活化过硫酸盐研究所存在的问题,并对未来的研究方向进行了展望,以期为活化过硫酸盐氧化技术在环境修复领域进一步发展和研究提供参考。Abstract: Formation of sulfate radicals via activation of persulfate (PS) is an emerging advanced oxidation technology, this method has received a wide attention in remediation for soil & water pollution for its low-toxic, high efficient, economic and environmental friendly properties. Based on bibliometrics and network graph analysis methods, this study reviewed and combed the academic literatures on persulfate from 1986 to 2019 using the Web of Science core database. VOSviewer (version 1.6.13) software was used to analyzes the countries, institutions, authors, journals, citations and keywords of persulfate related researches in the world, and the keywords network map and density map were drawn to analyze the study history of persulfate, current research focus and development prospects. The results showed that the research hotspots focused on the advanced oxidation technology, activation method, oxidation kinetics, mechanism, and application in remediation of soil and groundwater. Regarding on practical application of PS activation radicals, we also summarized the activation methods of persulfate and their actual application for degrading pollutants, raised the current research challenges and the prospects for future research directions, so as to provide reference for the further development and research of activated persulfate oxidation technology in environmental remediation.
-
Key words:
- activated persulfate /
- sulfate radical /
- advanced oxidation /
- research trend /
- bibliometric
-
表 1 过硫酸盐研究国家(Top 10)
Table 1. Top 10 countries of persulfate study
排名 国家 发文数量/篇 占比/% 1 中国 3 508 45.36 2 印度 993 12.84 3 美国 954 12.34 4 伊朗 536 6.93 5 韩国 363 4.69 6 日本 297 3.84 7 西班 275 3.56 8 法国 274 3.54 9 土耳其 264 3.41 10 埃及 236 3.05 表 2 过硫酸盐研究机构(Top 10)
Table 2. Top 10 institutions of persulfate study
排名 机构 发文数
量/篇占比/
%总被引
次数篇均被
引次数1 中国科学院 311 4.02 8 892 28.59 2 同济大学 134 1.73 3 991 29.78 3 哈尔滨工业大学 120 1.55 3 018 25.15 4 埃及国家研究中心 99 1.28 1 166 11.78 5 伊斯兰阿扎德大学 98 1.27 1 185 12.09 6 四川大学 89 1.15 1 026 11.53 7 俄罗斯科学院 85 1.10 1 972 23.2 8 武汉大学 85 1.10 1 809 21.28 9 印度理工大学 83 1.07 2 239 26.98 10 湖南大学 76 0.98 1 317 17.33 表 3 过硫酸盐研究作者(Top 10)
Table 3. Top 10 authors of persulfate study
排名 作者 发文数量 总被引次数 篇均被引次数 h指数 所属机构 1 STEJSKAL Jaroslav 53 2 773 52.32 68 捷克科学院 2 MA Jun(马军) 53 2 388 45.06 77 哈尔滨工业大学 3 TRCHOVA Miroslava 45 2 628 58.4 54 捷克科学院 4 DIONYSIOU Dionysios Dion 44 2 871 65.25 98 辛辛那提大学 5 YUAN Ruo(袁若) 43 1 070 24.88 64 西南大学 6 GAO Naiyun(高乃云) 43 1 725 40.12 53 同济大学 7 WANG Yan(王艳) 43 698 16.23 18 华南理工大学 8 WANG Aiqin(王爱勤) 41 1 731 42.22 65 中国科学院 9 ZHANG Hui(张晖) 41 1 537 37.49 53 武汉大学 10 WANG Shaobin(王少彬) 37 2 223 60.08 96 阿德莱德大学 表 4 过硫酸盐研究期刊(Top 10)
Table 4. Top 10 journals of persulfate study
排名 期刊 文献数量/篇 引用次数 国家 影响因子(IF) 1 Journal of Applied Polymer Science 495 8 160 美国 2.188 2 Chemical Engineering Journal 475 13 040 瑞士 8.355 3 Chemosphere 182 6 388 英国 5.108 4 RSC Advances 179 1 962 英国 3.049 5 Journal of Hazardous Materials 171 7 574 荷兰 7.65 6 Water Research 132 5 454 英国 7.913 7 Carbohydrate Polymers 119 4 829 英国 6.044 8 Environmental Science & Technology 114 8 088 美国 7.149 9 Synthetic Metals 111 4 435 瑞士 2.526 10 Journal of Polymer Science Part A: Polymer Chemistry 103 2 735 澳大利亚 2.591 表 5 被引文献及其被引量(Top 10)
Table 5. Top 10 cited references and citations
排名 论文作者 发表
年份被引文献 所属期刊 作者机构 被引
次数1 ANIPSITAKIS G P 2004 Radical generation by the interaction of transition metals with common oxidants Environmental Science & Technology 辛辛那提大学 610 2 BUXTON G V 1988 Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O−) in aqueous solution Journal of Physical and Chemical Reference Data 利兹大学 501 3 NETA P 1988 Rate constants for reactions of inorganic radicals in aqueous solution Journal of Physical and Chemical Reference Data 美国国家标准局 495 4 FURMAN O S 2010 Mechanism of base activation of persulfate Environmental Science & Technology 华盛顿州立大学 412 5 LIANG C J(梁晨居) 2007 Influence of pH on persulfate oxidation of TCE at ambient temperatures Chemosphere 中国台湾中兴大学 380 6 TSITONAKI A 2010 In situ chemical oxidation of contaminated soil and groundwater using persulfate:
A reviewCritical Reviews in Environmental Science and Technology 丹麦技术大学 379 7 HOUSE D A 1962 Kinetics and mechanism of oxidations by peroxydisulfate Chemical Reviews 惠灵顿维多利亚大学 364 8 LIANG C J(梁晨居) 2008 A rapid spectrophotometric determination of persulfate anion in ISCO Chemosphere 中国台湾中兴大学 349 9 LIANG C J(梁晨居) 2009 Identification of sulfate and hydroxyl radicals in thermally activated persulfate Industrial & Engineering Chemistry Research 中国台湾中兴大学 335 10 KOLTHOFF I M 1951 The chemistry of persulfate. I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium Journal of the American Chemical Society 明尼苏达大学 334 表 6 过硫酸盐的不同活化方法比较
Table 6. Comparison of different activation methods of persulfate
活化方法 活化反应式 优点 缺点 通常使用的条件 关键词共
现频次来源 热活化 $ {{\rm{S}}_2}{\rm{O}}_8^{2 - } + {\simfont\text{热}} \to 2{\rm{SO}}_4^ - \cdot $ 应用广泛且不存在催化剂分散、污染回收和失活的问题 加热成本高、自由基产生率低 一般最适温度为
40~50 ℃206 [33] 碱活化 $\begin{array}{l} { {\rm{S} }_2}{\rm{O} }_8^{2 - } + 2{ {\rm{H} }_2}{\rm{O} }\mathop \to \limits^{ {\rm{O} }{ {\rm{H} }^ - } } 2{\rm{SO} }_4^{2 - } +\\ {\rm{SO} }_4^ - \cdot + {\rm{O} }_2^ - \cdot + 4{ {\rm{H} }^ + }\\ {\rm{SO} }_4^ - \cdot + { {\rm{H} }_2}{\rm{O} } \to {\rm{SO} }_4^{2 - } + {\rm{OH} } + { {\rm{H} }^ + } \end{array}$ 拥有羟基自由基,使用范围更广泛 经济成本高(额外加碱),影响环境理化性质及生物活动,尚不成熟 常见物质为
NaOH和KOH29 [25] 过渡金属活化 $ {{\rm{S}}_2}{\rm{O}}_8^{2 - } + {\rm{M}}{{\rm{e}}^{n + }} \to {\rm{SO}}_4^ - \cdot +\\ {\rm{SO}}_4^{2 - } + {\rm{M}}{{\rm{e}}^{\left( {n + 1} \right) + }}$ 对温度、pH没有特殊
要求,简单易行,经济
效益高(钒、铁等)、低
能耗部分过渡金属(铜、银等)成本高且具有潜在
毒性常见活化剂为
Fe2+和Fe3+557 [34] 电活化 $ {{\rm{S}}_2}{\rm{O}}_8^{2 - } + {{\rm{e}}^ - } \to {\rm{SO}}_4^ - \cdot + {\rm{SO}}_4^{2 - }$ 去除率高、可电化学
再生耗电成本高,容易受外界干扰阻碍光源传播 — 145 [35] 紫外光活化 $ {{\rm{S}}_2}{\rm{O}}_8^{2 - } + {\rm{UV}} \to 2{\rm{SO}}_4^ - \cdot $ 经济成本低(太阳光)、高效、环境友好 成本高(额外能量),穿透能力有限 常用波长为
254 nm198 [36] 超声波活化 $ {{\rm{S}}_2}{\rm{O}}_8^{2 - } + {\rm{US}} \to 2{\rm{SO}}_4^ - \cdot $ 操作简单、不会产生有毒的副产物 容易引起局部温度和压力的大幅度升高 常用频率为
28~40 kHz53 [37] 表 7 过硫酸盐高级氧化技术的应用
Table 7. Application of advanced oxidation of persulfate
活化方法 目标污染物 降解条件 降解时间t 研究领域 降解率/% 来源 温度/℃ 污染物浓度c PS浓度c pH 热活化 香草醛、4-羟基苯甲醛、香草酸、4-羟基苯甲酸、紫丁香酸 80 0.1 g·L−1 1.5 g·L−1 6.0 1、2 h 废水 100 [45] 双酚A 40、50、
60、7020 mg·L−1 4.38 mmol·L−1 7.0 1 h 水环境 2.65、19.21、
40.98、98.38[46] 三氯生 50 50 mg·kg−1 9.4 mmol·L−1 4.5 6 h 土壤 65 [47] 紫外光活化 异丙醇 20 100 mg·L−1 2.1 g·L−1 7.0 20 min 工业废水 100 [48] 土霉素 — 10 µmol·L−1 1 mmol·L−1 7.0 10 h 水环境 100 [49] 铜绿微囊藻 25 1 × 106 cell·mL−1 6 mmol·L−1 7.0 2 h 水环境 98.2 [50] Fe2+活化 菲 20±0.5 0.5 mmol·L−1 0.5 mmol·L−1 3.0 20 min 水环境 100 [51] 芘 30 76.4 mg·kg−1 2.5 mmol·g−1 3.0 2 h 土壤 93.4 [52] 甲苯 — 1 mmol·L−1 27.3 mmol·L−1 7.0 30 min 土壤 84.4 [53] 碱活化 柴油 50 1×104 mg·kg−1 0.5 mol·L−1 >12 14、28 d 土壤 30 [54] 甲基叔丁基醚 — 11.34 mmol·L−1 170 mmol·L−1 >12 10 d 地下水 100 [55] 苯酚 25 10 mmol·L−1 420 mmol·L−1 >12 168 h 土壤 100 [56] 超声波活化 1,1,1-三氯乙烷 15±2 20 mg·L−1 1.5 mmol·L−1 7.0 5 h 地下水 100 [57] 1,4-二恶烷 15±2 1.0 mg·L−1 1.5 mmol·L−1 7.0 5 h 地下水 88 [57] 电活化 敌草隆 — 10 µmol·L−1 0.5 mmol·L−1 7.0 15 min 工业废水 >77 [58] 盐酸四环素(TCH) 25 50 mg·L−1 12.6 mmol·L−1 4.42 4 h 工业废水 81.1 [35] 六氯环己烷(HCH) — 40 µmol·L−1 16 mmol·L−1 约6.8 6~8 h 地下水 约100 [59] $ {{\rm{S}}_{\rm{2}}}{\rm{O}}_{\rm{8}}^{{\rm{2 - }}}$ /Fe2+/CA萘普生 22±1 75 µmol·L−1 750 µmol·L−1 5.0 45、120 min 地下水 >99 [60] 电化学/环形铁皮/PS 2,4 -二硝基
苯酚30±2 200 mg·L−1 5 mmol·L−1 7.0 15 min 工业废水 63.4 [61] -
[1] ZHOU Y Y, XIANG Y J, HE Y Z, et al. Applications and factors influencing of the persulfate-based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds[J]. Journal of Hazardous Materials, 2018, 359: 396-407. doi: 10.1016/j.jhazmat.2018.07.083 [2] WU Y, FAN L, HU S, et al. Role of dissolved iron ions in nanoparticulate zero-valent iron/H2O2 Fenton-like system[J]. International Journal of Environmental Science and Technology, 2019, 16(8): 4551-4562. doi: 10.1007/s13762-018-2094-z [3] CHANG T Y, WANG Y, ZHANG Z C, et al. Critical roles of Fe2+/Fe3+ in manipulating permanganate reactivity with zero-valent iron towards enhanced arsenite removal[J]. Desalination and Water Treatment, 2019, 162: 269-277. doi: 10.5004/dwt.2019.24328 [4] SUN Q, ZHU G C, WANG C Y, et al. Removal characteristics of steroid estrogen in the mixed system through an ozone-based advanced oxidation process[J]. Water, Air & Soil Pollution, 2019, 230(9): 218-231. [5] LU C, YAO J, KNUDSEN T S, et al. Degradation of α-nitroso-β-naphthol by UVA-B activated peroxide, persulfate and monopersulfate oxidants in water[J]. Journal of Cleaner Prodution, 2019, 238: 117942-117951. doi: 10.1016/j.jclepro.2019.117942 [6] XU S, WANG W, ZHU L Z. Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation[J]. Science of the Total Environment, 2019, 653: 1293-1300. doi: 10.1016/j.scitotenv.2018.10.444 [7] ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review[J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213 [8] FANG G D, WU W H, DENG Y M, et al. Homogenous activation of persulfate by different species of vanadium ions for PCBs degradation[J]. Chemical Engineering Journal, 2017, 323: 84-95. doi: 10.1016/j.cej.2017.04.092 [9] CHEN X W, YANG B, OLESZCZUK P, et al. Vanadium oxide activates persulfate for degradation of polycyclic aromatic hydrocarbons in aqueous system[J]. Chemical Engineering Journal, 2019, 364: 79-88. doi: 10.1016/j.cej.2019.01.117 [10] YOO J, JEON P, TSANG D C W, et al. Ferric-enhanced chemical remediation of dredged marine sediment contaminated by metals and petroleum hydrocarbons[J]. Environmental Pollution, 2018, 243: 87-93. doi: 10.1016/j.envpol.2018.08.044 [11] ZGOU L, YANG X R, JI Y F, et al. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: The role of five-membered heterocyclic rings[J]. Science of the Total Environment, 2019, 692: 201-208. doi: 10.1016/j.scitotenv.2019.07.259 [12] XU X M, LIU D, CHEN W M, et al. Waste control by waste: Efficient removal of bisphenol A with steel slag, a novel activator of peroxydisulfate[J]. Environmental Chemistry Letters, 2018, 16(4): 1435-1440. doi: 10.1007/s10311-018-0748-1 [13] LI W Y, REN R P, LIU Y X, et al. Improved bioelectricity production using potassium monopersulfate as cathode electron acceptor by novel bio-electrochemical activation in microbial fuel cell[J]. Science of the Total Environment, 2019, 690: 654-666. doi: 10.1016/j.scitotenv.2019.06.527 [14] LU X H, ZHAO J N, WANG Q, et al. Sonolytic degradation of bisphenol S: Effect of dissolved oxygen and peroxydisulfate, oxidation products and acute toxicity[J]. Water Research, 2019, 165: 114969-114979. doi: 10.1016/j.watres.2019.114969 [15] LIU Y, GUO W L, GUO H S, et al. Cu (II)-doped V2O5 mediated persulfate activation for heterogeneous catalytic degradation of benzotriazole in aqueous solution[J]. Separation and Purification Technology, 2020, 230: 115848-115855. doi: 10.1016/j.seppur.2019.115848 [16] SADEGHI M, SADEGHI R, GHASEMI B, et al. Removal of azithromycin from aqueous solution using UV- light alone and UV plus persulfate (UV/Na2S2O8) processes[J]. Iranian Journal Pharmaceutical Research, 2018, 17: 54-64. [17] MATZEK L W, CARTER K E. Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151: 178-188. doi: 10.1016/j.chemosphere.2016.02.055 [18] GAO Y, GE L, SHI S, et al. Global trends and future prospects of e-waste research: A bibliometric analysis[J]. Environmental Science and Pollution Research, 2019, 26(17): 17809-17820. doi: 10.1007/s11356-019-05071-8 [19] 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 中国环保产业, 2014, 36(5): 1689-1692. [20] 王琪, 王佳旭. 我国地下水污染现状与防治对策研究[J]. 环境与发展, 2017(3): 106-107. [21] TSITONAKI A, PETRI B, CRIMI M, et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(1): 55-91. doi: 10.1080/10643380802039303 [22] TAYLOR A, ZRINYI N, MEZYK S P, et al. In-situ chemical oxidation of chlorendic acid by persulfate: Elucidation of the roles of adsorption and oxidation on chlorendic acid removal[J]. Water Research, 2019, 162: 78-86. doi: 10.1016/j.watres.2019.06.061 [23] LIU Y, WANG S, WU Y, et al. Degradation of ibuprofen by thermally activated persulfate in soil systems[J]. Chemical Engineering Journal, 2019, 356: 799-810. doi: 10.1016/j.cej.2018.09.002 [24] ZRINYI N, PHAM A L T. Oxidation of benzoic acid by heat-activated persulfate: Effect of temperature on transformation pathway and product distribution[J]. Water Research, 2017, 120: 43-51. doi: 10.1016/j.watres.2017.04.066 [25] SANTOS A, FERNANDEZ J, RODRIGUEZ S, et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate[J]. Science of the Total Environment, 2018, 615: 1070-1077. doi: 10.1016/j.scitotenv.2017.09.224 [26] LOMINCHAR M A, SANTOS A, DE MIGUEL E, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate[J]. Science of the Total Environment, 2018, 622: 41-48. [27] WEI Z Q, GAO T, WANG J Z, et al. Mn(II)-activated persulfate for oxidative degradation of DDT[J]. Fresenius Environmental Bulletin, 2018, 27(7): 4598-4605. [28] ZHEN G Y, LU X Q, SU L H, et al. Unraveling the catalyzing behaviors of different iron species (Fe2+ vs. Fe) in activating persulfate-based oxidation process with implications to waste activated sludge dewaterability[J]. Water Research, 2018, 134: 101-114. doi: 10.1016/j.watres.2018.01.072 [29] CHEN F, LI X, MA J, et al. Remediation of soil co-contaminated with decabromodiphenyl ether (BDE-209) and copper by enhanced electrokinetics-persulfate process[J]. Journal of Hazardous Materials, 2019, 369: 448-455. doi: 10.1016/j.jhazmat.2019.02.043 [30] CHEN Y, GAO S, LIU Z, et al. Prolonged persulfate activation by UV irradiation of green rust for the degradation of organic pollutants[J]. Environmental Chemistry Letters, 2019, 17(2): 1017-1021. doi: 10.1007/s10311-018-0815-7 [31] WANG X, DONG W, BRIGANTE M, et al. Hydroxyl and sulfate radicals activated by Fe(III)-EDDS/UV: Comparison of their degradation efficiencies and influence of critical parameters[J]. Applied Catalysis B: Environmental, 2019, 245: 271-278. doi: 10.1016/j.apcatb.2018.12.052 [32] WANG S, ZHOU N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process[J]. Ultrasonics Sonochemistry, 2016, 29: 156-162. doi: 10.1016/j.ultsonch.2015.09.008 [33] WU Y Q, SONG K. Effect of thermal activated peroxydisulfate pretreatment on short-chain fatty acids production from waste activated sludge anaerobic fermentation[J]. Bioresource Technology, 2019, 292: 121977-121984. doi: 10.1016/j.biortech.2019.121977 [34] LUO T, WAN J, MA Y, et al. Sulfamethoxazole degradation by an Fe(Ⅱ)-activated persulfate process: insight into the reactive sites, product identification and degradation pathways[J]. Environmental Science: Processes and Impacts, 2019, 21(9): 1560-1569. doi: 10.1039/C9EM00254E [35] LIU J, ZHONG S, SONG Y, et al. Degradation of tetracycline hydrochloride by electro-activated persulfate oxidation[J]. Journal of Electroanalytical Chemistry, 2018, 809: 74-79. doi: 10.1016/j.jelechem.2017.12.033 [36] CHEN T S, MA J S, ZHANG Q X, et al. Degradation of propranolol by UV-activated persulfate oxidation: Reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation[J]. Science of the Total Environment, 2019, 690: 878-890. doi: 10.1016/j.scitotenv.2019.07.034 [37] LIU L, YAN H, YANG C, et al. Dewatering of drilling sludge by ultrasound assisted Fe(II)-activated persulfate oxidation[J]. RSC Advances, 2018, 8(52): 29756-29766. doi: 10.1039/C8RA03376E [38] WACLAWEK S, LUTZE H V, GRUBEL K, et al. Chemistry of persulfates in water and wastewater treatment: A review[J]. Chemical Engineering Journal, 2017, 330: 44-62. doi: 10.1016/j.cej.2017.07.132 [39] QI H, HUNG Y C. Effectiveness of activated persulfate in removal of foodborne pathogens from romaine lettuce[J]. Food Control, 2019, 106: 106708-106712. doi: 10.1016/j.foodcont.2019.106708 [40] AMOR C, RODRIGUEZ-CHUECA J, FERNANDES J L, et al. Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation[J]. Process Safety and Environmental Protection, 2019, 122: 94-101. doi: 10.1016/j.psep.2018.11.016 [41] KHANDARKHAEVA M, BATOEVA A, ASEEV D, et al. Oxidation of atrazine in aqueous media by solar-enhanced Fenton-like process involving persulfate and ferrous ion[J]. Ecotoxicology and Environmental Safety, 2017, 137: 35-41. doi: 10.1016/j.ecoenv.2016.11.013 [42] XUE W J, CUI Y H, LIU Z Q, et al. Treatment of landfill leachate nanofiltration concentrate after ultrafiltration by electrochemically assisted heat activation of peroxydisulfate[J]. Separation and Purification Technology, 2020, 231: 115928-115936. doi: 10.1016/j.seppur.2019.115928 [43] LIU Y X, WANG Y, XU W, et al. Simultaneous absorption-oxidation of nitric oxide and sulfur dioxide using ammonium persulfate synergistically activated by UV-light and heat[J]. Chemical Engineering Research and Design, 2018, 130: 321-333. doi: 10.1016/j.cherd.2017.12.043 [44] LIU Y, LIU Z, WANG Y, et al. Simultaneous absorption of SO2, and NO from flue gas using ultrasound/Fe2+ /heat coactivated persulfate system[J]. Journal of Hazardous Materials, 2018, 342: 326-334. doi: 10.1016/j.jhazmat.2017.08.042 [45] 荣亚运, 师林丽, 张晨, 等. 热活化过硫酸盐氧化去除木质素降解产物[J]. 化工学报, 2016, 67(6): 2618-2624. [46] 朱思瑞, 高乃云, 鲁仙, 等. 热激活过硫酸盐氧化降解水中双酚A[J]. 中国环境科学, 2017, 37(1): 188-194. [47] CHEN L W, HU X X, CAI T M, et al. Degradation of triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084 [48] LIN C C, TSAI C W. Degradation of isopropyl alcohol using UV and persulfate in a large reactor[J]. Separation and Purification Technology, 2019, 209: 88-93. doi: 10.1016/j.seppur.2018.06.068 [49] LIU Y, HE X, FUY, et al. Kinetics and mechanism investigation on the destruction of oxytetracycline by UV254 nm activation of persulfate[J]. Journal of Hazardous Materials, 2016, 305: 229-239. doi: 10.1016/j.jhazmat.2015.11.043 [50] WANG Z, CHEN Y, XIE P, et al. Removal of Microcystis aeruginosa by UV-activated persulfate: Performance and characteristics[J]. Chemical Engineering Journal, 2016, 300: 245-253. doi: 10.1016/j.cej.2016.04.125 [51] YU S X, GU X G, LU S G, et al. Degradation of phenanthrene in aqueous solution by a persulfate/percarbonate system activated with CA chelated-Fe(II)[J]. Chemical Engineering Journal, 2018, 333: 122-131. doi: 10.1016/j.cej.2017.09.158 [52] 张宏玲,李森,张杨, 等. 过渡金属离子活化过硫酸盐去除土壤中的芘[J]. 环境工程学报, 2016, 10(10): 6009-6014. doi: 10.12030/j.cjee.201505068 [53] LONG A, LEI Y, ZHANG H. Degradation of toluene by a selective ferrous ion activated persulfate oxidation process[J]. Industrial & Engineering Chemistry Research, 2014, 53(3): 1033-1039. [54] LIANG C, GUO Y Y. Remediation of diesel-contaminated soils using persulfate under alkaline condition[J]. Water, Air & Soil Pollution, 2012, 223(7): 4605-4614. [55] DENG D, PENG L, GUAN M, et al. Impact of activation methods on persulfate oxidation of methyl tert-butyl ether[J]. Journal of Hazardous Materials, 2014, 264(2): 521-528. [56] LOMINCHAR M A, RODRIGUEZ S, LORENZO D, et al. Phenol abatement using persulfate activated by nZVI, H2O2 and NaOH and development of a kinetic model for alkaline activation[J]. Environmental Technology, 2018, 39(1): 35-43. doi: 10.1080/09593330.2017.1294203 [57] LI B, ZHU J. Simultaneous degradation of 1,1,1-trichloroethane and solvent stabilizer 1,4-dioxane by a sono-activated persulfate process[J]. Chemical Engineering Journal, 2016, 284: 750-763. doi: 10.1016/j.cej.2015.08.153 [58] YU Y, ZHOU S, BU L, et al. Degradation of diuron by electrochemically activated persulfate[J]. Water, Air & Soil Pollution, 2016, 227(8): 279-287. [59] WACLAWEK S, ANTOS V, HRABAK P, et al. Remediation of hexachlorocyclohexanes by electrochemically activated persulfates[J]. Environmental Science and Pollution Research, 2016, 23(1): 765-773. doi: 10.1007/s11356-015-5312-y [60] DULOVA N, KATTEL E, TRAPIDO M J C E J. Degradation of naproxen by ferrous ion-activated hydrogen peroxide, persulfate and combined hydrogen peroxide/persulfate processes: The effect of citric acid addition[J]. Chemical Engineering Journal, 2016, 318: 254-263. [61] LI J, REN Y, LAI L, et al. Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2,4-dinitrophenol in aqueous solution[J]. Journal of Hazardous Materials, 2018, 344: 778-787. doi: 10.1016/j.jhazmat.2017.11.007