-
消毒是保障饮用水安全的重要工艺,但消毒过程中产生的各类消毒副产物(disinfection by-products,DBPs)会严重危害人体健康。根据消毒副产物结构中是否含N,可将其分为含氮消毒副产物(N-DBPs)和含碳消毒副产物(C-DBPs,只含C而不含N)[1]。毒理学研究表明,相比于C-DBPs,N-DBPs的遗传毒性、细胞毒性和致癌性更强[2]。已知的典型N-DBPs及其结构[3]见表1,其对应结构如图1所示。MUELLNER等[4]研究了卤乙腈(HANs)对仓鼠卵巢细胞的细胞毒性,表明HANs细胞毒性、遗传毒性远高于三卤甲烷(THMs)和卤乙酸(HAAs),其中细胞毒性最高可达THMs的150倍。KANCHANAMAYOON[5]概括了3种HANs的癌症级别(表2),由表2可知,其在低浓度下就会对生命健康造成损害。研究N-DBPs的生成机制、控制和高效去除方法,对保障饮水安全、保护生命健康具有重要意义。
饮用水中典型含氮消毒副产物的生成与控制研究进展
Research progress on the formation and control of typical nitrogenous disinfection by-products in drinking water
-
摘要: 含氮消毒副产物作为一类具有强“三致”作用的高毒性新兴消毒副产物,其生成和控制等相关问题是饮用水处理领域研究的重点和难点。典型的含氮消毒副产物有卤乙腈、亚硝胺、卤代硝基甲烷及卤乙酰胺,在总结这类消毒副产物的生成机制和去除手段的基础上,针对其浓度低、极性强造成富集难、去除率低的瓶颈问题,分别从新材料、新技术研发及工艺优化组合方向提出了消除含氮消毒副产物问题的研究重点,展望了新型纳米功能材料耦合电化学技术处理含氮消毒副产物的发展前景,为解决强“三致”作用的高毒性新兴含氮消毒副产物问题提供参考。Abstract: Nitrogenous disinfection by-products (N-DBPs) are high-toxicity emerging disinfection by-products with intensive “carcinogenicity, teratogenicity, mutagenicity”. Issues about their generation and control are research focus and difficulty in the drinking water treatment field. The typical nitrogenous disinfection by-products include haloacetonitrile, nitrosamine, halogenated nitromethane, and halogenated acetamide. Based on the summary of generation mechanism and removal methods of these disinfection by-products, for the bottleneck problems of difficult enrichment and low removal efficiency due to their low concentration and strong polarity, the research focus on removal of nitrogenous disinfection by-products was proposed from the aspects of new materials, new technological development and process optimization combination, and the prospect of novel nanomaterials coupling electrochemical technology to treat nitrogenous disinfection by-products was expected. This can provide reference for solving problems of high-toxicity emerging disinfection by-products with intensive “carcinogenicity, teratogenicity, mutagenicity”.
-
表 1 典型含氮消毒副产物(N-DBPs)的种类
Table 1. Species of typical nitrogenous disinfection by-products (N-DBPs)
名称 化学式 典型种类 卤乙腈(HANs) R3CCN 二氯乙腈(DCAN)、溴氯乙腈(BCAN)、二溴乙腈(DBAN)、
三氯乙腈(TCAN)、三溴乙腈(TBAN)卤乙酰胺(HAcAms) R3CCONH2 二氯乙酰胺(DCAcAm)、二溴乙酰胺(DBAcAm)、三氯乙酰胺(TCAcAm) 卤代硝基甲烷(HNMs) R3CNO2 三氯硝基甲烷(TCNM)、三溴硝基甲烷(TBNM)、二氯一溴硝基甲烷
(DCBNM)、二溴一氯硝基甲烷(DBCNM)亚硝胺(NMs) R2NNO N-亚硝基二甲胺(NDMA)、N-亚硝基吡咯烷(NPYR)、N-亚硝基吗啡胆碱(NMOR)、N-亚硝基二乙胺(NDEA) 注:R通常是Cl、Br、I、H或烷基,也可以是脂肪族或芳香族基团。 表 2 3种卤乙腈在定量条件下的毒性
Table 2. Toxicity of three kinds of haloacetonitrile under quantitative conditions
物质 癌症级别 参考剂量/(mg·(kg·d)−1) 饮用水当量/(mg·L−1) 定性目标水平/(μg·L−1) 毒性 TCAN C — — 1 致癌、致突变 DCAN C 0.008 0.300 90 细菌分析种致突变 DBAN C 0.020 0.800 100 小鼠致癌致突变 -
[1] 高乃云, 楚文海, 严敏, 等. 饮用水消毒副产物形成与控制研究[M]. 北京: 中国建筑工业出版社, 2011. [2] PLEWA M J, MUELLNER M G, RICHARDSON S D, et al. Occurrence, synthesis, and mammalian cell cytotoxicity and genotoxicity of haloacetamides: An emerging class of nitrogenous drinking water disinfection byproducts[J]. Environmental Science & Technology, 2008, 42(3): 955-961. [3] BOND T, HUANG J, TEMPLETON M R, et al. Occurrence and control of nitrogenous disinfection by-products in drinking water: A review[J]. Water Research, 2011, 45(15): 4341-4354. doi: 10.1016/j.watres.2011.05.034 [4] MUELLNER M G, WANGER E D, MCCALLA K, et al. Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic?[J]. Environmental Science & Technology, 2007, 41(2): 645-651. [5] KANCHANAMAYOON W. Sample preparation methods for the determination of chlorination disinfection byproducts in water samples[J]. Chromatographia, 2015, 78(17): 1135-1142. [6] SINGER P C. Humic substances as precursors for potentially harmful disinfection by-products[J]. Water Science and Technology, 1999, 40(9): 25-30. doi: 10.2166/wst.1999.0434 [7] GOSLAN E H, SEIGLE C, PURCELL D, et al. Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter[J]. Chemosphere, 2017, 170: 1-9. doi: 10.1016/j.chemosphere.2016.11.148 [8] WESTERHOFF P, MASH H. Dissolved organic nitrogen in drinking water supplies: A review[J]. Journal of Water Supply: Research and Technology Aqua, 2002, 51(8): 415-448. doi: 10.2166/aqua.2002.0038 [9] HELLER G L, IDIN A, LIMONI R B, et al. Formation of cyanogen bromide and other volatile DBPs in the disinfection of bromide-rich lake water[J]. Environmental Science & Technology, 1999, 33(6): 932-937. [10] 宝露尔, 张海峰, 于建伟, 等. 含氮消毒副产物卤乙腈前驱体及生成机制综述[J]. 给水排水, 2016, 52(8): 134-141. doi: 10.3969/j.issn.1002-8471.2016.08.031 [11] SGROI M, VAGLIASINDI F G A, SNYDER S A, et al. N-nitrosodimethylamine (NDMA) and its precursors in water and wastewater: A review on formation and removal[J]. Chemosphere, 2018, 191: 685-703. doi: 10.1016/j.chemosphere.2017.10.089 [12] 高乃云, 楚文海, 徐斌. 从生成机制谈饮用水中新型消毒副产物的控制策略[J]. 给水排水, 2017, 43(2): 1-5. doi: 10.3969/j.issn.1002-8471.2017.02.001 [13] DENG L, WEN L, DAI W, et al. Impact of tryptophan on the formation of TCNM in the process of UV/chlorine disinfection[J]. Environmental Science and Pollution Research, 2018, 25(23): 23227-23235. doi: 10.1007/s11356-018-2397-0 [14] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways[J]. Environmental Science & Technology, 2012, 46(1): 119-131. [15] 张星, 王珊, 李小龙, 等. 饮用水中卤代乙酰胺的研究进展[J]. 化学与生物工程, 2019, 36(9): 7-10. doi: 10.3969/j.issn.1672-5425.2019.09.002 [16] 郭学博, 袁守军. 氨基酸氯化生成卤乙酰胺的潜能和影响因素[J]. 广州化工, 2019, 47(18): 78-82. doi: 10.3969/j.issn.1001-9677.2019.18.031 [17] 陈丹雯, 黄富, 朱世翠, 等. 氯消毒过程中水中色氨酸产生THMs和HAAs的特征研究[J]. 中国环境科学, 2018, 38(11): 63-69. [18] TREHY M L, YOST R A, MILES C J. Chlorination byproducts of amino acids in natural waters[J]. Environmental Science & Technology, 1986, 20(11): 1117-1122. [19] 荣蓉, 徐斌, 林琳, 等. 微污染黄浦江水溶解性有机氮的分子组成特性分析[J]. 中国给水排水, 2013, 29(1): 1-5. doi: 10.3969/j.issn.1000-4602.2013.01.001 [20] 梁闯, 徐斌, 高乃云, 等. 氯化消毒副产物NDMA的生成与控制研究进展[J]. 中国给水排水, 2008, 24(22): 6-11. doi: 10.3321/j.issn:1000-4602.2008.22.002 [21] 古励, 郭显强, 丁昌龙, 等. 藻源型溶解性有机氮的产生及不同时期藻类有机物的特性[J]. 中国环境科学, 2015, 35(9): 2745-2753. doi: 10.3969/j.issn.1000-6923.2015.09.029 [22] 李伟, 徐斌, 夏圣骥, 等. 饮用水中溶解性有机氮类化合物的控制研究进展[J]. 中国给水排水, 2009, 25(8): 22-26. doi: 10.3321/j.issn:1000-4602.2009.08.005 [23] METCALFE D, ROCKEY C, JEFFERSON B, et al. Removal of disinfection by-product precursors by coagulation and an innovative suspended ion exchange process[J]. Water Research, 2015, 87: 20-28. doi: 10.1016/j.watres.2015.09.003 [24] ZHANG Y, CHU W, YAO D, et al. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity[J]. Journal of Environmental Sciences, 2017, 58: 322-330. doi: 10.1016/j.jes.2017.03.028 [25] 刘冰, 郑煜铭, 古励, 等. 强化混凝和改性活性炭对二级出水DON的作用机制[J]. 中国环境科学, 2018, 38(1): 136-149. doi: 10.3969/j.issn.1000-6923.2018.01.017 [26] TONG C P, KUMSUVAN J, PHATTHALUNG W N, et al. Reduction by enhanced coagulation of dissolved organic nitrogen as a precursor of N-nitrosodimethylamine[J]. Journal of Environmental Science and Health, 2018, 53(6): 583-593. doi: 10.1080/10934529.2018.1428270 [27] WANG F, GAO B, MA D, et al. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration[J]. Environmental Science and Pollution Research, 2016, 23(22): 22914-22923. doi: 10.1007/s11356-016-7496-1 [28] FAN X, TAO Y, WEI D, et al. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Frontiers of Environmental Science & Engineering, 2015, 9(1): 112-120. [29] ZAZOULI M A, KALANKESH L R. Removal of precursors and disinfection by-products (DBPs) by membrane filtration from water: A review[J]. Journal of Environmental Health Science and Engineering, 2017, 15: 25-34. doi: 10.1186/s40201-017-0285-z [30] TAN Y, LIN T, JIANG F, et al. The shadow of dichloroacetonitrile (DCAN), a typical nitrogenous disinfection by-product (N-DBP), in the waterworks and its backwash water reuse[J]. Chemosphere, 2017, 181: 569-578. doi: 10.1016/j.chemosphere.2017.04.118 [31] ERSAN M S, LADNER D A, KARANFIL T. The control of N-nitrosodimethylamine, halonitromethane, and trihalomethane precursors by nanofiltration[J]. Water Research, 2016, 105: 274-281. doi: 10.1016/j.watres.2016.08.065 [32] SRITHEP S, PHATTARARATTAMAWONG S. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3)[J]. Chemosphere, 2017, 176: 25-31. doi: 10.1016/j.chemosphere.2017.02.107 [33] DING S, WANG F, CHU W, et al. Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type disinfection by-product formation[J]. Water Research, 2019, 167: 115096-115108. doi: 10.1016/j.watres.2019.115096 [34] 纪瑶瑶, 赵梦, 周丽, 等. 顺序氯化消毒对微污染原水消毒副产物控制研究[J]. 水处理技术, 2018, 44(2): 24-28. [35] LIU Z, LIN Y L, CHU W H, et al. Comparison of different disinfection processes for controlling disinfection by-product formation in rainwater[J]. Journal of Hazardous Materials, 2020, 385: 121618-121657. doi: 10.1016/j.jhazmat.2019.121618 [36] HU J, CHU W, SUI M, et al. Comparison of drinking water treatment processes combinations for the minimization of subsequent disinfection by-products formation during chlorination and chloramination[J]. Chemical Engineering Journal, 2018, 335: 352-361. doi: 10.1016/j.cej.2017.10.144 [37] 曹中琦, 盖世博. 活性炭吸附去除水中高毒性N-DBPs卤代乙酰胺[J]. 净水技术, 2019, 38(7): 78-84. [38] 丁春生, 沈嘉辰, 缪佳, 等. 改性活性炭吸附饮用水中三氯硝基甲烷的研究[J]. 中国环境科学, 2013, 33(5): 821-826. doi: 10.3969/j.issn.1000-6923.2013.05.008 [39] FUJIOKA T, ISHIDA K P, SHINTANI T, et al. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors[J]. Water Research, 2018, 131: 45-51. doi: 10.1016/j.watres.2017.12.025 [40] 员建, 徐彬, 王浡谕, 等. UV氧化去除含氮消毒副产物二氯乙腈和二溴乙腈的效能[J]. 环境工程, 2019, 37(6): 68-72. [41] HOU S, LING L, SHANG C, et al. Degradation kinetics and pathways of haloacetonitriles by the UV/persulfate process[J]. Chemical Engineering Journal, 2017, 320: 478-484. doi: 10.1016/j.cej.2017.03.042 [42] 丁春生, 马海龙, 傅洋平, 等. Fe/Cu催化还原降解饮用水中溴氯乙腈的性能研究[J]. 环境科学, 2015, 36(6): 2116-2121. [43] 韩莹, 王济禾, 李军, 等. 氧化铜催化零价铁还原水中亚硝基二甲胺[J]. 中国环境科学, 2017, 37(6): 2100-2105. doi: 10.3969/j.issn.1000-6923.2017.06.014