-
近些年,我国水污染事故时有发生,威胁到水资源的安全[1-3]。水污染问题不仅影响水生态,还威胁到供水安全,甚至造成社会公共事件。为应对水污染事故,我国构建了相关应急机制,但多针对水污染事故造成的后果以及处理方法。在水污染事故发生后采取的应急及处理方法使得污染物处置难度大,还会增加社会经济成本。如何在事故发生前,建立以风险防控为目标的水源污染突发事件高风险点识别方法,实现有效预警,是当前管理部门所关注的重点之一[4-6]。
对事故敏感点进行诊断通常采用事故树分析(fault tree analysis,FTA)方法,亦称为故障树分析法。这种方法是安全系统工程中常用的研究方法,能帮助找出导致事故发生的基本原因事件[7-9]。目前,该方法已经被成功应用于矿山、能源、石化、交通、公共卫生、电力、和经济等多个行业,但在水源污染事故风险点甄别中的应用还很少[10-12]。事故树分析主要将构成事故因素逐级分解成单独事件,采用布尔代数计算各导致事故的最小割集和径集、结构重要度等为研究方法。然而,对于事故概率的估计往往基于经验值,国内同类研究中缺乏关于大量已发生事故案例的定量统计研究[13-15]。
本研究基于世界卫生组织(World Health Organization,WHO)颁发的《饮用水水质准则》和《水安全计划手册——供水企业分步实施的风险管理》,建立水源事故树的基本事故框架。结合我国2000年以来能够查阅到的1 900多起水源污染突发事件案例,统计计算出各个基本风险因素发生概率。采用事故树分析方法和贝叶斯网络定量分析了导致水源污染的各种事件概率,最终通过事故树节点逻辑关系确定水源水质发生污染事故的不同事故节点发生概率。根据我国近20年发生的事故对所有因素进行了导致水源污染的基本事故排序,筛选出水源高风险点,以期为加强水源安全事故风险管控提供技术参考。
我国水源污染事故风险点定量识别方法
Quantitative identification of causation points for water source pollution accident in China
-
摘要: 水源事故的频发会对城市供水系统产生威胁,有必要针对供水系统风险进行评估和防控。针对水源事故频发及高发因素定量甄别研究,筛选统计了国内近20年来1 900多起水质突发事故案例,梳理了触发水源水质污染的多种因素,通过构建水源水质安全事故树和贝叶斯网络进行了相互验证分析。结果表明:我国水源污染事故主要因素贡献为依次突然排放(0.466)、污染长期累积(0.242)、交通事故(0.109)等;采用贝叶斯网络计算进行验证,其结果与事故树方法一致性较好。该方法有助于水源污染防控工作中风险点甄别和排序,可为我国饮用水安全保障水平的提升提供支撑。Abstract: With the development of China’s economy in the past ten years, water accidents have occurred frequently, which is a certain degree of threat to the urban water supply system. Therefore, it is necessary to evaluate, prevent and control the risks of the water supply system. According to the quantitative screening research on frequent and high-incidence factors of water source accidents, more than 1900 water quality accidents in the past 20 years have been screened in China, and various factors that triggered water quality pollution have been sorted out, and the mutual analysis was conducted through the construction of fault tree analysis and Bayes networks. The results reveal that the main factors contributing to water pollution accidents in China were sudden discharge (0.466), long-term accumulation of pollution (0.242), and traffic accidents (0.109). The Bayesian network method has been utilized for verification, and the results are in good agreement with the fault tree analysis. The methods are helpful for the identification and ordering of causation points in the prevention and control of water pollution, and can provide support for improving the level of drinking water safety in China.
-
表 1 水源事故树基本危害事件统计
Table 1. Basic hazard event statistics of water source fault tree
基本事件 对应代码 发生概率 基本事件 对应代码 发生概率 管道事故 X1 0.039 人为投毒 X20 0.006 企业违法排污 X2 0.359 生活污水 X21 0.064 安全事故 X3 0.095 废弃物 X22 0.048 暴雨、洪水 X4 0.039 矿物开采 X23 0.016 药类废水 X5 0.007 农药化肥 X24 0.009 疲劳驾驶 X6 <0.001 农业污水 X25 <0.001 操作失误 X7 <0.001 水生植物 X26 0.009 道路条件 X8 <0.001 森林 X27 <0.001 天气原因 X9 <0.001 气候变迁 X28 0.002 违规行驶 X10 <0.001 地形 X29 <0.001 油类 X11 0.022 娱乐排放 X30 <0.001 危害化学物 X12 0.052 水面作业 X31 0.005 机械渗油 X13 0.009 小型船只 X32 0.009 融雪剂 X14 0.001 构筑物坍塌 X33 0.008 事故车辆 X15 0.009 化工厂 X34 0.021 航运事故 X16 0.018 动物浮尸 X35 0.009 氮磷营养物 X17 0.006 养殖污染 X36 0.036 藻类 X18 0.039 其他污染 X37 0.023 生活垃圾 X19 0.041 表 2 水源事故树中间事件结果
Table 2. Middle event result list of water source fault tree
中间事件 对应代码 发生概率 中间事件 对应代码 发生概率 突然排放 A1 0.466 工业区 C1 0.09 累计污染 A2 0.242 农业活动 C2 0.054 交通事故污染 A3 0.109 自然因素 C3 0.012 土地占用 B1 0.139 船舶 C4 0.014 水生态污染变化 B2 <0.001 建筑工事 D1 0.029 其他排污 B3 0.12 畜牧 D2 0.045 表 3 事故树与贝叶斯网络计算结果比较
Table 3. Comparison of accident tree and Bayesian network results
中间事件 对应代码 发生概率 中间事件 对应代码 发生概率 FTA BN FTA BN 突然排放 A1 0.466 0.539 工业区 C1 0.09 0.093 累计污染 A2 0.242 0.272 农业活动 C2 0.054 0.054 交通事故污染 A3 0.109 0.111 自然因素 C3 0.012 0.011 土地占用 B1 0.139 0.147 船舶 C4 0.014 0.014 水生态污染变化 B2 <0.001 <0.001 建筑工事 D1 0.029 0.029 其他排污 B3 0.12 0.125 畜牧 D2 0.045 0.045 -
[1] 马铁焰. 紫坪铺水库突发性水污染事故预警应急系统[J]. 中国西部科技, 2010, 27(9): 12-13. [2] HU J, CHU J Y, LIU J H, et al. Risk identification of sudden water pollution on fuzzy fault tree in Beibu-Gulf economic zone[J]. Procedia Environmental Sciences, 2011, 10(Part C): 2413-2419. [3] TEN VELDHUIS J A E, CLEMENS F H L R, VAN GELDER P H A J M. Quantitative fault tree analysis for urban water infrastructure flooding[J]. Structure and Infrastructure Engineering, 2011, 7: 809-821. doi: 10.1080/15732470902985876 [4] 杨娅, 马俊伟, 刘仁志. 上海市突发环境事件时空格局及影响因素分析[J]. 中国人口·资源与环境, 2012, 22(S1): 105-109. [5] MAHMOOD Y A, AHMADI A, VERMA A K, et al. Fuzzy fault tree analysis: A review of concept and application[J]. International Journal of Systems Assurance Engineering and Management, 2013, 4(1): 19-32. doi: 10.1007/s13198-013-0145-x [6] 滕洪辉, 王继库. 基于事故树的城市二次供水水质污染风险分析[J]. 安全与环境工程, 2013, 20(3): 69-72. doi: 10.3969/j.issn.1671-1556.2013.03.016 [7] DING L, DU B, LUO G, et al. Adsorption of bromate from emergently polluted raw water using MIEX resin: Equilibrium, kinetic, and thermodynamic modeling studies[J]. Desalination and Water Treatment, 2015, 56(8): 2193-2205. doi: 10.1080/19443994.2014.958763 [8] TAHERIYOUN M, MORADIEJAD S. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation[J]. Environmental Monitoring and Assessment, 2015, 187: 4186. doi: 10.1007/s10661-014-4186-7 [9] TANG C, YI Y, YANG Z, et al. Risk forecasting of pollution accidents based on an integrated Bayesian Network and water quality model for the South to North Water Transfer Project[J]. Ecological Engineering, 2016, 96: 109-116. doi: 10.1016/j.ecoleng.2015.11.024 [10] MAKAJIC-NIKOLIC D, PETROVIC N, BELIC A, et al. The fault tree analysis of infectious medical waste management[J]. Journal of Cleaner Production, 2016, 113: 365-373. doi: 10.1016/j.jclepro.2015.11.022 [11] HUANG W, FAN H, QIU Y, et al. Causation mechanism analysis for haze pollution related to vehicle emission in Guangzhou, China by employing the fault tree approach[J]. Chemosphere, 2016, 151: 9-16. doi: 10.1016/j.chemosphere.2016.02.024 [12] LONG Y, XU G, MA C, et al. Emergency control system based on the analytical hierarchy process and coordinated development degree model for sudden water pollution accidents in the Middle Route of the South-to-North Water Transfer Project in China[J]. Environmental Science and Pollution Research, 2016, 23: 12332-12342. doi: 10.1007/s11356-016-6448-0 [13] 王浩, 郑和震, 雷晓辉, 等. 南水北调中线干线水质安全应急调控与处置关键技术研究[J]. 四川大学学报(工程科学版), 2016, 48(2): 1-6. [14] 沈园, 谭立波, 单鹏, 等. 松花江流域沿江重点监控企业水环境潜在污染风险分析[J]. 生态学报, 2016, 36(9): 2732-2739. [15] ZHENG H, SHANG Y, DUAN Y, et al. Sudden water pollution accidents and reservoir emergency operations: Impact analysis at Danjiangkou Reservoir[J]. Environmental Technology, 2018, 39(8): 787-803. [16] 冯庚, 张楠, 陈猛志, 等. 事故树分析与贝叶斯网络重要度在溃坝风险分析中的应用[J]. 水电能源科学, 2013, 31(4): 66-68. [17] 王洪德. 用事故树法分析矿井内因火灾引起CO中毒事故[J]. 辽宁工学院学报, 2002, 22(3): 26-28. [18] 王显政. 新编安全评价手册[M]. 北京: 煤炭工业出版社, 2005. [19] KAISER B, GRAMLICH C, FORSTER M. State/event fault trees: A safety analysis model for software-controlled systems[J]. Reliability Engineering and System Safety, 2007, 92(11): 1521-1537. doi: 10.1016/j.ress.2006.10.010 [20] CHEN Y, LI J, LU H, et al. The dynamic benefit compensation in a multi-reservoir system based on importance analysis[J]. Journal of Cleaner Production, 2020, 249: 119402. doi: 10.1016/j.jclepro.2019.119402 [21] SAEIDI-MOBARAKEH Z, TAVAKKOLI-MOGHADDAM R, NAVABAKHSH M, et al. A bi-level and robust optimization-based framework for a hazardous waste management problem: A real-world application[J]. Journal of Cleaner Production, 2020, 252: 119830. doi: 10.1016/j.jclepro.2019.119830 [22] 许静, 王永桂, 陈岩, 等. 中国突发水污染事件时空分布特征[J]. 中国环境科学, 2018, 38(12): 4566-4575. doi: 10.3969/j.issn.1000-6923.2018.12.022 [23] BABAEI M, ROOZBAHANI A S, SHAHDANY M H. Risk assessment of agricultural water conveyance and delivery systems by fuzzy fault tree analysis method[J]. Water Resources Management, 2018, 32(12): 4079-4101. doi: 10.1007/s11269-018-2042-1 [24] BORYCZKO K, BARTOSZEK L, KOSZELNIK P, et al. A new concept for risk analysis relating to the degradation of water reservoirs[J]. Environmental Science and Pollution Research, 2018, 25: 25591-25599. doi: 10.1007/s11356-018-2634-6 [25] TABESH M, ROOZBAHANI A, ROGHANI B, et al. Risk assessment of factors influencing non-revenue water using Bayesian networks and fuzzy logic[J]. Water Resources Management, 2018, 32(11): 3647-3670. doi: 10.1007/s11269-018-2011-8 [26] 孙惠娟, 沈建. 突发性水污染预警应急系统解析[J]. 决策探索, 2018(5): 88-89. doi: 10.3969/j.issn.1003-5419.2018.05.042 [27] WANG F, ZHENG P, DAI J, et al. Fault tree analysis of the causes of urban smog events associated with vehicle exhaust emissions: A case study in Jinan, China[J]. Science of the Total Environment, 2019, 668: 245-253. doi: 10.1016/j.scitotenv.2019.02.348 [28] PIETRUCHA-URBANIK K, STUDZINSKI A. Qualitative analysis of the failure risk of water pipes in terms of water supply safety[J]. Engineering Failure Analysis, 2019, 95: 371-378. doi: 10.1016/j.engfailanal.2018.09.008 [29] GACHLOU M, ROOZBAHANI A, BANIHABIB M E. Comprehensive risk assessment of river basins using fault tree analysis[J]. Journal of Hydrology, 2019, 577: 123974. doi: 10.1016/j.jhydrol.2019.123974 [30] 李思琪, 伦艺宁, 刘一凡, 等. 基于事故树分析法的营运客车翻车事故分析[J]. 价值工程, 2019, 38(9): 63-65. [31] 韩明毅, 安伟, 桑晨惠, 等. 基于浊度与颗粒数关系的饮用水中“两虫”去除率预测模型[J]. 给水排水, 2019, 45(5): 134-140. [32] 韩明毅, 安伟, 马金锋, 等. 人畜共患贾第鞭毛虫和隐孢子虫国内研究进展[J]. 中国病原生物学杂志, 2019, 14(5): 614-622.