-
我国目前生活污水普遍具有含碳量低的特点,这使得污水处理尾水中常含有大量的硝酸盐[1]。现有的污水处理厂中常因碳源不足而导致出水难以达到日益严格的N、P排放标准[2]。而后置反硝化生物滤池因其占地面积小、效率高、耐冲击负荷强等优点被广泛应用于各种深度脱氮(硝酸盐去除)的研究与实践中[3]。此外,由于季节变化导致的气温波动,冬季污水处理厂内的水温可降至10 ℃以内[4]。由于微生物生长普遍具有强温度依赖性[5-6],因此,低温环境下维持废水的生物处理效率较为困难。
污水中的磷通常以化学沉淀的形式外排,这既污染环境又浪费了磷资源。而磷矿石作为一种不可再生资源,其储量已经濒于枯竭[7]。因此,国内外对磷的研究更倾向于对其进行回收利用,以期实现磷资源的可持续利用[8-10]。而近期基于内碳源(聚羟基烷酸,PHA)的反硝化聚磷菌(DPAOs)的研究引起了人们的广泛关注[11-12]。DPAOs在缺氧段以PHA作为电子供体,以
${\rm{NO}}_3^ - $ -N/${\rm{NO}}_2^ - $ -N为电子受体吸磷,从而实现“一碳两用”[13-14]。DPAOs能够在厌氧/缺氧交替运行的反应器(A/A)内大量富集,在缺氧环境中DPAOs缺氧吸磷速率(以${\rm{NO}}_3^ - $ -N/${\rm{NO}}_2^ - $ -N为电子受体)仅仅略低于好氧吸磷速率(以O2为电子受体)[15]。还有部分DPAOs也可在厌氧/好氧交替的反应器(A/O)内大量富集。WONG等[16]研究发现,即使反应器内的DO浓度较高,DPAOs也可利用污水与生物膜(絮体)内氧浓度的差异,根据需要选择性地利用O2或${\rm{NO}}_3^ - $ -N/${\rm{NO}}_2^ - $ -N作为电子受体吸磷。根据这一特性开发的反硝化除磷(DPR)技术能够缓解污水碳源含量不足所带来的难题,反硝化聚磷菌(DPAOs)工艺可降低30%的能源需求和50%的污泥产量[17-19]。而将后置DPR工艺与厌氧/好氧(A/O)工艺联合,在后置缺氧阶段利用内源碳(PHA)来驱动DPR过程,可实现脱氮除磷的同时节省外碳源的投加量。杨建鹏等提出了碳源调控-回收磷工艺系统(BBNR-CPR),发现利用内源碳能够改善系统的耐低温特性[20]。本研究在此基础上,引入后置反硝化段,构建出A/O复合A/O/A(厌氧/好氧/缺氧)工艺,采用延长好氧内循环时长等运行策略,以期实现以下3点目标。一是培养与富集DPAOs,强化系统的反硝化除磷性能;二是在保证系统脱氮除磷效果的基础上降低系统能耗;三是比较微生物菌群结构,探明DPAOs菌群的组成。
后置反硝化的设置对低温下碳源调控-回收磷工艺系统(BBNR-CPR)脱氮除磷的影响
Effect of post-denitrifying setup on nitrogen and phosphorus removal in the biofilm bio-nutrients removal-carbon source regulated phosphorus recovery process (BBNR-CPR) at low temperature
-
摘要: 采用连续运行式生物膜脱氮蓄磷-碳源调控回收磷系统(biofilm bio-nutrient removal carbon source regulated phosphorus removal,BBNR-CPR)处理低C/N比(3.4~6.9)模拟生活污水。通过反应器内生物膜来蓄积废水中的磷,同时采用周期性投加高浓度的外加碳源,诱导释放生物膜内蓄积的磷且对其进行回收。在此基础上,通过增设后置缺氧段,同时增加好氧内循环量、提高磷回收阶段补充碳源浓度等方式,强化BBNR-CPR系统的运行,以期实现低温下(<15 ℃)系统的同步脱氮蓄磷/回收磷的目标。结果表明,在低温下引入后置缺氧段,可节省27%的曝气能耗,并能维持该系统脱氮除磷性能的稳定性。在进水
${{\rm{NH}}_4^ +} $ -N、TP浓度分别为50 mg·L−1、15 mg·L−1的条件下,该系统对${{\rm{NH}}_4^ +} $ -N、TN和TP的平均去除率分别达到了89.12%、82.14%和89.24%。在单个生物蓄磷-磷回收周期(7 d)内,随着系统运行时间的延长(第3~6天),生物膜内反硝化聚磷菌体内的PHA的不断消耗,系统的缺氧吸磷速率仍可维持稳定,第3和6天分别为7.51 mg·(L·h)−1和7.83 mg·(L·h)−1)。在该运行方式下,系统后置缺氧段每去除1.00 mg${{\rm{NO}}_3^ - }$ -N可耦合去除0.76 mg TP;且该阶段限制反硝化除磷的主要因素是进水氨氮转化时产生的硝态氮(反硝化吸磷电子受体)的浓度。通过对生物膜样本进行16S rRNA高通量测序分析,发现系统内的优势菌群为Candidatus Competibacter、Candidatus Nitrotoga、Phaeodactylibacter、Thiothrix和Dechloromonas。Abstract: A continuous biofilm bio-nutrient removal-carbon source regulated phosphorus removal (BBNR-CPR) process was used as the alternative anaerobic/aerobic and alternative anaerobic/aerobic/anoxic biofilter to treat the simulated municipal wastewater with low C/N ratio (influent C/N ratio from 3.44 to 6.91). Phosphorus (P) in the wastewater was accumulated in the biomass, and at the same time, a high concentration of external carbon source was periodically introduced to release the accumulated P in the biofilm for further recovery. On this basis, the BBNR-CPR system was enhanced to achieve the goal of simultaneous P storage/ removal at low temperature during aerobic and post-denitrification phase, which was achieved by the post-anoxic phase setup, the increase of the internal circulation during aerobic phase and the supplementary carbon source amount during periodical P-harvesting phase under anaerobic conditions. The results showed that the system could save 27% of energy supply by introducing a post anoxic phase, and maintain a stable nitrogen and phosphorous removal performance at low temperatures (<15 ℃). Meanwhile, the average removal rates of${\rm{NH}}_4^ + $ -N, TN and TP reached 89.12%, 82.14% and 89.24%, respectively, at the influent${\rm{NH}}_4^ + $ -N of 50 mg·L−1 and TP of 15 mg·L−1. During a P accumulation/recovery cycle (7 days), the PHA storage amount in the biomass of denitrification phosphorous accumulation organisms (DPAOs) was continuously consumed with the extension of the biofilter operating time (day 3 - day 6), while the rate of denitrifying P uptake maintained stable (7.51 mg (L·h)−1 on the 3rd day, 7.83 mg (L·h)−1 on the 5th day). The post-denitrifying phase could removal 0.76 mg TP when it removed 1.00 mg${\rm{NO}}_3^ - $ -N. The main limiting factor of denitrifying phosphorus removal at this stage was the availability of nitrate nitrogen (as the electron acceptor for denitrifying phosphorus uptake) produced during ammonia nitrogen transformation. 16S rRNA high-throughput sequencing analysis of biofilm samples showed that the dominate functional communities in the reactor were the genus of Candidatus Competibacter, Candidatus Nitrotoga, Phaeodactylibacter, Thiothrix, and Dechloromonas. -
表 1 BBNR-CPR系统的运行设置
Table 1. Operational configuration of BBNR-CPR system
阶段 温度/℃ 时间/d $ {\rm{NH}}_4^ + $ -N/
(mg·L−1)TN/
(mg·L−1)C/Na 流量Q/
(L·h−1)b磷回收当量值
(以COD计)/(mg·L−1)进水添加 $ {\rm{NO}}_3^ - $ -N/
(mg·L−1)运行方式 Ⅰ 20~25 45 70 70 3.87 3.33 800 无 A/O Ⅱ 25~30 48 70 75~80 3.44 3.33 800 5~10 A/O Ⅲ 15~25 40 65 65 4.07 3.33 800 无 A/O Ⅳ 8~15 68 55 55 6.91 5.00 1 750 无 A/O+A/O/A 注:a表示C量由磷回收时的补充碳源和蓄磷阶段模拟废水中进水碳源两部分组成;b表示好氧(缺氧段进水流量变化),而厌氧阶段进水流量始终保持为3.33 L·h−1。 表 2 不同运行条件下缺氧段氮磷消耗比值
Table 2. Comparison of nitrogen and phosphorus consumption ratio at anoxic stage in different studies
运行工艺 C∶N∶P 缺氧段进水
硝态氮浓度/(mg·L−1)进水TP/
(mg·L−1)温度/℃ 吸磷速率(好氧/
缺氧)/(mg·(L·h)−1)ΔP/ΔN
(缺氧阶段)来源 AO/AOA 25∶3.7∶1 14.4 14.9~16.5 8~15 19.93/7.67a 0.76 本研究 AO/AA 20.0∶1.5∶1 40.0 20.0 25~29 13.87~16.32/6.30~11.38 0.29/0.43 [15] AAO 26.7∶4.2∶1 50.0 10.0~15.0 25 8.40/8.00 1.00 [26] AAO 36.6∶10.3∶1 30.0 3.6~9.3 19~21 — 1.25 [27] AO/AA 25.3∶2.5∶1 35.5 12.0~17.0 21~R23 15.59/13.11 0.23 [28] AO 20.8∶4.8∶1 44.2 9.0~12.0 — 14.17/12.85b 0.80 [29] 注:a表示本研究A/O/A模式中,缺氧阶段2 h的平均吸磷速率;b表示研究中3 h去除速率的均值;“—”表示数据未提及。 -
[1] CAO S B, DU R, PENG Y Z, et al. Novel two stage partial denitrification (PD)-anammox process for tertiary nitrogen removal from low carbon/nitrogen (C/N) municipal sewage[J]. Chemical Engineering Journal, 2018, 362: 106-115. [2] LV X M, LI J, SUN F Y, et al. Denitrifying phosphorus removal for simultaneous nitrogen and phosphorus removal from wastewater with low C/N ratios and microbial community structure analysis[J]. Desalination & Water Treatment, 2016, 57(4): 1890-1899. [3] CHEN Y, LAN S, WANG L, et al. A review: Driving factors and regulation strategies of microbial community structure and dynamics in wastewater treatment systems[J]. Chemosphere, 2017, 174: 173-182. doi: 10.1016/j.chemosphere.2017.01.129 [4] AUGELLETTI F, JOUSSET A, AGATHOS S N, et al. Diversity manipulation of psychrophilic bacterial consortia for improved biological treatment of medium-strength wastewater at low temperature[J]. Frontiers in Microbiology, 2020, 11: 1490. doi: 10.3389/fmicb.2020.01490 [5] ZHOU H X, LI X, XU G, et al. Overview of strategies for enhanced treatment of municipal/domestic wastewater at low temperature[J]. Science of the Total Environment, 2018, 643: 225-237. doi: 10.1016/j.scitotenv.2018.06.100 [6] HUANG Z S, QIE Y, WANG Z D, et al. Application of deep-sea psychrotolerant bacteria in wastewater treatment by aerobic dynamic membrane bioreactors at low temperature[J]. Journal of Membrane Science, 2015, 475: 47-56. doi: 10.1016/j.memsci.2014.09.038 [7] MACDONALD G K, BENNETT E M, POTTER P A, et al. Agronomic phosphorus imbalances across the world's croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7): 3086-3091. doi: 10.1073/pnas.1010808108 [8] YILMAZEL Y D, DEMIRER G N. Nitrogen and phosphorus recovery from anaerobic co-digestion residues of poultry manure and maize silage via struvite precipitation[J]. Waste Management & Research, 2013, 31(8): 792-804. [9] KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems: A review[J]. Bioresource Technology, 2014, 153: 351-360. doi: 10.1016/j.biortech.2013.12.046 [10] TIAN Q, ONG S K, XIE X, et al. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter[J]. Chemosphere, 2016, 144: 1797-1806. doi: 10.1016/j.chemosphere.2015.10.072 [11] JI J, PENG Y, WANG B, et al. A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial-denitrification and denitrifying dephosphatation[J]. Water Research, 2019, 170: 115363. [12] LIN Z, WANG Y, HUANG W, et al. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery[J]. Bioresource Technology, 2019, 277: 27-36. doi: 10.1016/j.biortech.2019.01.025 [13] 王爱杰, 吴丽红, 任南琪, 等. 亚硝酸盐为电子受体反硝化除磷工艺的可行性[J]. 中国环境科学, 2005, 25(5): 515-518. doi: 10.3321/j.issn:1000-6923.2005.05.002 [14] CAMEJO P Y, OWEN B R, MARTIRANO J, et al. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors[J]. Water Research, 2016, 102: 125-137. doi: 10.1016/j.watres.2016.06.033 [15] HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. doi: 10.1016/S0043-1354(03)00205-7 [16] WONG P Y, CHENG K Y, KAKSONEN A H, et al. A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms[J]. Water Research, 2013, 47(17): 6488-6495. doi: 10.1016/j.watres.2013.08.023 [17] HU X, WISNIEWSKI K, CZERWIONKA K, et al. Modeling the effect of external carbon source addition under different electron acceptor conditions in biological nutrient removal activated sludge systems[J]. Environmental Science & Technology, 2016, 50(4): 1887-1896. [18] 韦佳敏, 黄慧敏, 程诚, 等. 污泥龄及pH值对反硝化除磷工艺效能的影响[J]. 环境科学, 2019, 40(4): 1900-1905. [19] 刘建业, 曹薇薇, 张雁秋, 等. SBR新型运行方式下的反硝化脱氮除磷效能[J]. 环境工程学报, 2015, 9(8): 3859-3864. doi: 10.12030/j.cjee.20150844 [20] 杨建鹏, 张健, 田晴, 等. 内源碳PHA的贮存对混合菌群耐低温特性的影响[J]. 环境科学, 2019, 40(4): 1914-1921. [21] CHEN Y, PENG C, WANG J, et al. Effect of nitrate recycling ratio on simultaneous biological nutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system[J]. Bioresource Technology, 2011, 102(10): 5722-5727. doi: 10.1016/j.biortech.2011.02.114 [22] 黄剑明, 赵智超, 郑隆举, 等. 低温下A2/O-BAF反硝化除磷脱氮特性[J]. 环境科学, 2018, 39(10): 4621-4627. [23] TIAN Q, ZHUANG L, ONG S K, et al. Phosphorus (P) recovery coupled with increasing influent ammonium facilitated intracellular carbon source storage and simultaneous aerobic phosphorus & nitrogen removal[J]. Water Research, 2017, 119: 267-275. doi: 10.1016/j.watres.2017.02.050 [24] KERRN-JESPERSEN J P, HENZE M. Biological phosphorus uptake under anoxic and aerobic conditions[J]. Water Research, 1993, 27(4): 617-624. doi: 10.1016/0043-1354(93)90171-D [25] 吴鹏, 程朝阳, 沈耀良, 等. 基于ABR-MBR组合工艺不同进水C/N比对反硝化除磷性能的影响机制[J]. 环境科学, 2017, 38(9): 3781-3786. [26] 刘建广, 付昆明, 杨义飞, 等. 不同电子受体对反硝化除磷菌缺氧吸磷的影响[J]. 环境科学, 2007, 28(7): 1472-1476. doi: 10.3321/j.issn:0250-3301.2007.07.011 [27] SUN Y, PENG Y, ZHANG J, et al. Effect of endogenous metabolisms on survival and activities of denitrifying phosphorus removal sludge under various starvation conditions[J]. Bioresource Technology, 2020, 315: 123839. doi: 10.1016/j.biortech.2020.123839 [28] 刘小英, 林慧, 马兆瑞, 等. 同步脱氮除磷颗粒污泥硝化反硝化特性试验研究[J]. 环境科学, 2014, 35(1): 214-220. [29] 李勇智, 王淑滢, 吴凡松, 等. 强化生物除磷体系中反硝化聚磷菌的选择与富集[J]. 环境科学学报, 2004, 24(1): 45-49. doi: 10.3321/j.issn:0253-2468.2004.01.009 [30] TU Y J, SCHULER A J. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater[J]. Environmental Science & Technology, 2013, 47(8): 3816-3824. [31] XU J, PANG H, HE J, et al. Start-up of aerobic granular biofilm at low temperature: Performance and microbial community dynamics[J]. Science of the Total Environment, 2019, 698: 134311. [32] ZHANG Y, HUA Z S, LU H, et al. Elucidating functional microorganisms and metabolic mechanisms in a novel engineered ecosystem integrating C, N, P and S biotransformation by metagenomics[J]. Water Research, 2019, 148: 210-230. [33] OEHMEN A, CARVALHO G, FREITAS F, et al. Assessing the abundance and activity of denitrifying polyphosphate accumulating organisms through molecular and chemical techniques[J]. Water Science and Technology, 2010, 61(8): 2061-2068. doi: 10.2166/wst.2010.976 [34] NIELSEN P H, MIELCZAREK A T, KRAGELUND C, et al. A conceptual ecosystem model of microbial communities in enhanced biological phosphorus removal plants[J]. Water Research, 2010, 44(17): 5070-5088. doi: 10.1016/j.watres.2010.07.036 [35] SUN L, ZHAO X, ZHANG H, et al. Biological characteristics of a denitrifying phosphorus-accumulating bacterium[J]. Ecological Engineering, 2015, 81: 82-88. doi: 10.1016/j.ecoleng.2015.04.030 [36] GUO Y, ZENG W, LI N, et al. Effect of electron acceptor on community structures of denitrifying polyphosphate accumulating organisms in anaerobic-anoxic-oxic (A2O) process using DNA based stable-isotope probing (DNA-SIP)[J]. Chemical Engineering Journal, 2018, 334: 2039-2049. doi: 10.1016/j.cej.2017.11.170 [37] DU S, YU D, ZHAO J, et al. Achieving deep-level nutrient removal via combined denitrifying phosphorus removal and simultaneous partial nitrification-endogenous denitrification process in a single-sludge sequencing batch reactor[J]. Bioresource Technology, 2019, 289: 121690. doi: 10.1016/j.biortech.2019.121690 [38] XU J, PANG H, HE J, et al. The effect of supporting matrix on sludge granulation under low hydraulic shear force: Performance, microbial community dynamics and microorganisms migration[J]. Science of the Total Environment, 2020, 712: 136562. doi: 10.1016/j.scitotenv.2020.136562