-
施氏矿物(schwertmannite)是BIGHAM等[1]于1990年在酸性矿山废水中发现的一种结晶度差的次生羟基硫酸铁沉淀[2-3],并在1994年被命名[4],化学式为Fe8O8(OH)8−2x(SO4)x(1≤x≤1.75)[5]。有研究表明,施氏矿物是降解有机污染物的高效催化剂,常被用来催化降解甲基橙[6-8]、罗丹明B[9]、苯酚[10-11]等有机污染物。甲基橙作为典型的偶氮染料被广泛应用于纺织印染行业,由于其具有可生化性差、色度大和难降解等特点,其降解行为备受关注。
施氏矿物是亚稳态的[12-13],溶液体系中存在的一价阳离子(Na+,K+,
$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ )会促进其向黄铁矾转化[14-15],且成矾能力表现为K+>$ {\rm{NH}}_{\rm{4}}^{\rm{ + }}$ >Na+[15-16]。然而,在传统生物合成施氏矿物的过程中,总Fe沉淀量约为30%,大量的Fe3+仍然存在于溶液中,故矿物得率较低[17-18]。因此,促进施氏矿物合成过程中Fe3+的高效沉淀,提高矿物得率是施氏矿物合成领域亟待解决的问题。$ {\rm{BH}}_{\rm{4}}^{\rm{ - }}$ 可以与Fe3+反应生成Fe,Fe在溶液中可与Fe3+或与H+反应产生Fe2+[19-22]。涉及的化学反应如式(1)~式(3)所示。首先,施氏矿物生物合成后,通过在滤液中加入
$ {\rm{BH}}_{\rm{4}}^{\rm{ - }}$ ,滤液中的Fe3+会在$ {\rm{BH}}_{\rm{4}}^{\rm{ - }}$ 作用下转化为Fe2+,Fe2+作为能源物质被A. ferrooxidans生物氧化为Fe3+,并进一步水解为次生铁矿物,可能会提高总Fe的沉淀率和矿物得率;其次,由于Na+成矾能力最弱,故本研究选择向施氏矿物合成后的滤液中加入NaBH4,考察了其对滤液pH、Fe2+、总Fe含量及次生铁矿物生成量的影响,并揭示了次生铁矿物形貌、矿相和比表面积的变化;此外,基于硫酸根自由基高级氧化技术,探究了所得矿物在254 nm紫外光照射下催化降解偶氮染料甲基橙的效果。本研究可为次生铁矿物合成的生物化学调控及其在偶氮染料降解领域的应用提供参考。
NaBH4对施氏矿物-黄铁矾生物化学合成的影响及矿物在催化降解甲基橙中的应用
Effect of NaBH4 on the biochemical synthesis of schwertmannite-jarosite and the application of the minerals in the catalytic degradation of methyl orange
-
摘要: 利用嗜酸性氧化亚铁硫杆菌合成施氏矿物,由于大量Fe3+残留于溶液中,致使矿物合成量较低。通过在生物合成施氏矿物的滤液中分3个批次加入NaBH4,探究了NaBH4的投加量对施氏矿物生物合成及其向黄铁矾转化的影响。结果表明:在连续分3个批次各加入1.25 g·L−1和1.67 g·L−1 NaBH4后,2个处理组的总Fe沉淀率分别达到47.00%和62.67%,次生铁矿物生成量分别为8.92 g·L−1和10.34 g·L−1。生成的矿物分别是施氏矿物(第1批次)、施氏矿物与黄钠铁矾混合物(第2批次)、黄钠铁矾(第3批次),在加入1.25 g·L−1和1.67 g·L−1 NaBH4 的2个处理组中3个批次合成矿物的比表面积分别为14.17 m2·g−1和20.02 m2·g−1(第1批次)、32.95 m2·g−1和42.74 m2·g−1(第2批次)、0.84 m2·g−1和13.68 m2·g−1(第3批次)。在催化降解甲基橙的实验中,当矿物比表面积为4.94~42.74 m2·g−1时,能够显著提高甲基橙的去除率。以上研究结果可为次生铁矿物合成及其应用提供参考。
-
关键词:
- 嗜酸性氧化亚铁硫杆菌 /
- 次生铁矿物 /
- NaBH4 /
- 矿相转化 /
- 催化降解
Abstract: The yield amount of schwertmannite synthesized by A. ferrooxidans is relatively low, a large amount of Fe3+ remained in the solution. In this study, NaBH4 was added to the filtrate produced from the traditional biosynthesis schwertmannite in three batches, and the effect of NaBH4 on the synthesis of schwertmannite and its transformation to jarosite was explored. The results showed that after adding 1.25 g·L−1 and 1.67 g·L−1 NaBH4 to two treatment groups in three batches, the total Fe precipitation rate reached 47.00% and 62.67%, and the yield amounts of secondary iron minerals reached 8.92 g·L−1 and 10.34 g·L−1, respectively. The yield minerals were schwertmannite in the first batch, a mixture of schwertmannite and jarosite in the second batch, jarosite in the third batch, respectively. The specific surface areas of synthesized minerals when adding 1.25 g·L−1 and 1.67 g·L−1 NaBH4 to two treatment groups in three batches were 14.17 m2·g−1 and 20.02 m2·g−1 in the first batch, 32.95 m2·g−1 and 42.74 m2·g−1 in the second batch, 0.84 m2·g−1 and 13.68 m2·g−1 in the third batch, respectively. In the experiments of catalytic degradation of methyl orange, the removal rate of methyl orange could be significantly improved by minerals at its specific surface area of 4.94~42.74 m2·g−1. The results of this study can provide reference for the secondary iron minerals synthesis and application.-
Key words:
- A. ferrooxidans /
- secondary iron minerals /
- NaBH4 /
- mineral phase transformation /
- catalytic degradation
-
表 1 次生铁矿物的比表面积
Table 1. Specific surface area of the secondary iron minerals
NaBH4加入量/
(g·L−1)次生铁矿物比表面积/(m2·g−1) 第1批次 第2批次 第3批次 1.25 14.17 32.95 0.84 1.67 20.02 42.74 13.68 -
[1] BIGHAM J M, SCHWERTMANN U, CARLSON L, et al. A poorly crystallized oxyhydroxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters[J]. Geochimica Et Cosmochimica Acta, 1990, 54(10): 2743-2758. doi: 10.1016/0016-7037(90)90009-A [2] ZHANG Z, BI X, LI X T, et al. Schwertmannite: Occurrence, properties, synthesis and application in environmental remediation[J]. RSC Advances, 2018, 8(59): 33583-33599. doi: 10.1039/C8RA06025H [3] 李旭伟, 贺静, 张健, 等. 透析对施氏矿物微观结构及其砷吸附能力的影响[J]. 环境科学学报, 2020, 40(2): 546-553. [4] BIGHAM J M, CARLSON L, MURAD E. Schwertmannite, a new iron oxyhydroxysulphate from Pyhasalmi, Finland, and other localities[J]. Mineralogical Magazine, 1994, 58: 641-648. [5] LIU F W, ZHOU J, ZHOU L X, et al. Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment[J]. Journal of Hazardous Materials, 2015, 299: 404-411. doi: 10.1016/j.jhazmat.2015.06.035 [6] WU Y, GUO J, JIANG D J, et al. Heterogeneous photocatalytic degradation of methyl orange in schwertmannite/oxalate suspension under UV irradiation[J]. Environmental Science and Pollution Research, 2012, 19: 2313-2320. doi: 10.1007/s11356-012-0740-4 [7] 汪快兵, 方迪, 徐峙晖, 等. 生物合成施氏矿物作为类芬顿反应催化剂降解甲基橙的研究[J]. 环境科学, 2015, 36(3): 995-999. [8] 薛旭东, 王永平, 张思敬. 施氏矿物/H2O2体系对废水中甲基橙的降解性能及机理[J]. 环境工程学报, 2019, 13(4): 843-849. [9] RAN J Y, YU B. Rapid ferric transformation by reductive sissolution of schwertmannite for highly efficient catalytic degradation of Rhodamine B[J]. Materials, 2018, 11(7): 1165-1178. doi: 10.3390/ma11071165 [10] YAN S, ZHENG G Y, MENG X Q, et al. Assessment of catalytic activities of selected iron hydroxysulphates biosynthesized using Acidithiobacillus ferrooxidans for the degradation of phenol in heterogeneous Fenton-like reactions[J]. Separation & Purification Technology, 2017, 185: 83-93. [11] WANG W M, SONG J, HAN X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2[J]. Journal of Hazardous Materials, 2013, 262(15): 412-419. [12] LIAO Y H, ZHOU L X, LIANG J R, et al. Biosynthesis of schwertmannite by Acidithiobacillus Ferrooxidans cell suspensions under different pH condition[J]. Materials Science and Engineering C, 2009, 29: 211-215. [13] BARHAM R J. Schwertmannite: A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate[J]. Journal of Materials Research, 1997, 12(10): 2751-2758. doi: 10.1557/JMR.1997.0366 [14] 宋永伟, 王鹤茹, 梁剑茹, 等. 嗜酸性氧化亚铁硫杆菌介导的次生铁矿物形成的影响因素分析[J]. 环境科学学报, 2018, 38(3): 1024-1030. [15] JONES F S, BIGHAM J M, GRAMP J P, et al. Synthesis and properties of ternary(K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions[J]. Materials Science and Engineering C, 2014, 44: 391-399. doi: 10.1016/j.msec.2014.08.043 [16] BAI S Y, XU Z H, WANG M, et al. Both initial concentrations of Fe(II) and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[J]. Materials Science and Engineering C, 2012, 32(8): 2323-2329. doi: 10.1016/j.msec.2012.07.003 [17] 刘奋武, 高诗颖, 崔春红, 等. Ca(Ⅱ)对酸性硫酸盐环境中次生铁矿物合成的影响[J]. 中国环境科学, 2015, 35(4): 1142-1148. [18] LIU F W, ZHOU J, JIN T J, et al. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans[J]. Water Science & Technology, 2016, 73(6): 1442-1453. [19] ZHANG L, MANTHIRAM A. Ambient temperature synthsis of fine metal particles in montmorillonite clat and their magnetic properties[J]. Nanostructured Materials, 1996, 7(4): 437-451. doi: 10.1016/0965-9773(96)00015-3 [20] CAO Y Q, DAI Z, CHEN B H, et al. Sodium borohydride reduction of ketones, aldehydes and imines using PEG400 as catalyst without solvent[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 834-836. [21] SUN Y P, LI X Q, CAO J S, et al. Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science, 2006, 120: 47-56. doi: 10.1016/j.cis.2006.03.001 [22] LEIVISKA T, ZHANG R, TANSKANEN J, et al. Synthesis of zerovalent iron from water treatment residue as a conjugate with kaolin and its application for vanadium removal[J]. Journal of Hazardous Materials, 2019, 374: 372-381. doi: 10.1016/j.jhazmat.2019.04.056 [23] QIAO X X, LIU L L, SHI J, et al. Heating changes bio-schwertmannite microstructure and arsenic(III) removal efficiency[J]. Minerals, 2017, 7(1): 9. [24] DONG Y, LIU F W, QIAO X X, et al. Effects of acid mine drainage on calcareous soil characteristics and Lolium perenne L. germination[J]. International Journal of Environmental Research and Public Health, 2018, 15(12): 2742. doi: 10.3390/ijerph15122742 [25] ACERO P, AYORA C, TORRENTO C, et al. The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite[J]. Geochimica et Cosmochimica Acta, 2006, 70: 4130-4139. doi: 10.1016/j.gca.2006.06.1367 [26] PAIKARAY S, SCHRODER C, PEIFFER S. Schwertmannite stability in anoxic Fe(II)-rich aqueous solution[J]. Geochimica et Cosmochimica Acta, 2017, 217: 292-305. doi: 10.1016/j.gca.2017.08.026 [27] 宋永伟, 陈婷, 王鹤茹, 等. 阴离子对Acidithiobacillus ferrooxidans氧化活性及次生铁矿物形成影响[J]. 中国环境科学, 2018, 38(2): 574-580. [28] JONSSON J, PERSSON P, SJOBERG S, et al. Schwertmannite precipitated from acid mine drainage: Phase transformation, sulphate release and surface properties[J]. Applied Geochemistry, 2005, 20: 179-191. doi: 10.1016/j.apgeochem.2004.04.008 [29] WANG H, BIGHAM J M, TUOVINEN O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J]. Materials Science and Engineering C, 2006, 26(4): 588-592. doi: 10.1016/j.msec.2005.04.009 [30] ZHU J Y, GAN M, ZHANG D, et al. The nature of schwertmannite and jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability[J]. Materials Science and Engineering C, 2013, 33: 2679-2685. doi: 10.1016/j.msec.2013.02.026