-
空气中颗粒物易引发慢性鼻咽炎和慢性支气管炎等呼吸系统疾病,从而影响人群健康[1]。房屋拆迁、土方工程和结构工程等施工过程产生的扬尘是大气颗粒物的重要来源之一[2]。因此,研究施工阶段扬尘的空间扩散特性及相应的管理控制措施,对于改善城市环境空气质量具有重要意义[3]。
近年来,国内外学者从扬尘化学元素特征[4-5]、扬尘空间扩散[6-8]、扬尘排放因子[9-10]、扬尘排放特征[11-13]、扬尘健康损害评估[14-15]和扬尘控制措施[16-17]等角度,对施工扬尘扩散进行了研究。田刚等[8]对建筑施工扬尘空间扩散模型进行了研究,结果表明,二次幂函数模型同时适用于描述水平和垂直方向的扬尘扩散规律;此外,还提出了四维通量法施工扬尘排放模型[9]。也有学者将烟羽扩散高斯模型应用于扬尘扩散研究[16, 18]。随着计算机技术的发展,数值模拟逐渐被广泛应用于对空气污染物分布及扩散的研究[19-20],为扬尘空间扩散模型及监测控制提供了更多研究途径。然而,现有数值模拟研究大多是对比分析风速、围挡距离以及围挡高度等因素对扬尘污染的影响,鲜有结合工地实测扬尘数据来分析扬尘空间扩散模型的研究,而对相应分级控制措施的研究则更加有限。
本研究利用多个城市施工工地的现场监测数据,详细探讨了工地周围扬尘在水平和垂直方向的扩散规律,并以北京某工地实测数据为例,利用数值模拟Fluent软件,重现了工地周围区域扬尘颗粒的分布情况,并提出了综合评价施工扬尘污染程度的分级方法及管理控制措施,以期为有效解决施工扬尘问题提供参考。
施工扬尘空间扩散特性的模型分析与分级管控措施
Spatial diffusion characteristics and hierarchical control measures of construction dust
-
摘要: 基于多个城市施工工地的扬尘监测数据,对比分析了幂函数、高斯函数和指数律模型在描述施工扬尘空间扩散特性上的适用性。以北京市某工地为例,基于CFD模拟,研究了施工扬尘的空间分布及扩散特性。通过与实测数据的对比,验证了模拟结果的准确性,分析了指数律模型在描述施工扬尘空间扩散特性上的适用性,并根据扬尘污染程度将施工区域影响范围划分为3个等级区,提出了综合评估施工扬尘污染严重程度的分级方法与管理控制措施。结果表明:指数律模型适用于描述施工扬尘空间扩散规律,幂函数模型仅适用于水平向,高斯函数模型在水平和垂直方向均不适用;围挡对施工扬尘的水平影响距离约为5倍围挡高度;工地周围可划分为重度污染区(<26 m)、中度污染区(26~42 m)和轻度污染区(42~100 m);可在各污染区布置监测点,综合评估施工扬尘污染严重程度,便于扬尘的分级管理与控制。本研究结果可为减少施工扬尘污染、提高环境空气质量提供参考。Abstract: Based on the monitoring data of construction dust in several cities, the applicability of power law, Gaussian law and exponential law models in describing spatial diffusion of construction dust is compared. Computational Fluid Dynamics (CFD) simulations are performed to study the spatial distribution and diffusion characteristics of construction dust at a construction site in Beijing, and the feasibility of the proposed exponential law model is also analyzed. The CFD model is validated by measured data. Three zones are divided around the construction sites according to the concentration of construction dust. A classification method for dust pollution is proposed based on the monitored dust data in the three zones, and the corresponding measures are presented for its management and control. The results show that the proposed exponential law model is suitable for describing the spatial diffusion of construction dust and the power law model merely fits the horizontal diffusion. The Gaussian law model is not applicable for both. The CFD results indicate that the horizontal influence distance of the enclosure on dust concentration is about 5 times the enclosure height. The surrounding of the construction site can be divided into heavily polluted zone (<26 m), moderately polluted zone (26~42 m) and lightly polluted zone (42~100 m). Corresponding measurements are suggested to be set in the three zones, and comprehensive assessment of dust pollution can be classified. The classification results can provide reasonable measures for dust management and control. This study provides scientific advices for alleviating dust pollution and improving environmental quality.
-
表 1 施工扬尘浓度实测数据来源与信息
Table 1. Detailed information of construction dust concentration
方向 数据编号 文献 工地类型及施工阶段 监测日期 监测仪器及监测指标 监测位置 水平 数据1 [26] 郑州市某人行天桥建设工程及道路改造工程 2010-04 DustMate粉尘仪,TSP浓度 离地1 m,距工地10~200 m布置8个测点 数据2 [8] 国家游泳中心建筑工地 2004-11—2005-05 集灰缸,DF浓度 离地3 m,距工地0~105 m布置8个测点 数据3 [16] 南昌市某学校教学楼拆除工程 2018-09 HT-9600粉尘仪,TSP浓度 离地1.8 m,距工地0~200 m布置18个测点 数据4 [25] 成都市新都区12个建筑工地,包括土方工程、基础工程、主体施工工程和装饰施工工程 2018-01—2018-12 DustTRAK TM粉尘监测仪,TSP浓度 距工地0~80 m布置17个测点 垂直 数据5 [8] 西城区5栋大楼建筑工地,经历土方工程和主体施工工程 2004-05—2004-11 集灰缸,DF浓度 工地边界离地2.7~4.1 m高度布置5个测点 数据6 [27] 兰州大学内某地下燃气锅炉房建筑施工工地,经历土方工程、基础工程、主体施工工程和水电安装工程 2009-03—2009-08 集灰缸,DF浓度 工地周围A、B、C、D位置布置离地3.9~18.9 m共6个测点 表 2 施工扬尘数值模拟参数设定
Table 2. Parameter settings of the numerical simulation of the construction dust
参数 取值或选项 参数 取值或选项 定常/非定常 Steady 随机轨道模型 Discret Random Walk Model 求解器 Pressure-Based 气固耦合频率/步−1 1 重力/(m·s−2) −9.8 喷射源类型 surface 湍流模型 Standard k-ε model 颗粒质量流速/(kg·s−1) 1.5×10−5 算法 SIMPLE 颗粒密度/(kg·m−3) 1 550 动量方程 Second Order Upwind 粒径分布 Rosin-Rammler 气-固耦合模型 Discrete Phase 最大粒径/m 2.72×10−4 空气密度/(kg·m−3) 1.225 最小粒径/m 1.81×10−7 空气运动黏度/(m2·s−1) 1.460 7×10−5 中位粒径/m 3.52×10−5 模拟步数 8 000 粒径分布参数 2.51 统计步数 1 000 粒径数目 10 -
[1] MENG J, LIU J F, FAN S M, et al. Potential health benefits of controlling dust emissions in Beijing[J]. Environmental Pollution, 2016, 213(1): 850-859. [2] QIU X H, DUAN L, GAO J, et al. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China[J]. Journal of Environmental Sciences, 2016, 40(2): 75-83. [3] 温玲丽. 城市建筑施工扬尘空间运移模式的数值模拟[D]. 兰州: 兰州大学, 2011. [4] PELT R S V, ZOBECK T M. Chemical constituents of fugitive dust[J]. Environmental Monitoring & Assessment, 2007, 130(1/2/3): 3-16. [5] SUN J, SHEN Z X, ZHANG L M, et al. Chemical source profiles of urban fugitive dust PM2.5 samples from 21 cities across China[J]. Science of the Total Environment, 2019, 649(1): 1045-1053. [6] AMORIM J H, RODRIGUES V, TAVARES R, et al. CFD modelling of the aerodynamic effect of trees on urban air pollution dispersion[J]. Science of the Total Environment, 2013, 461-462(7): 541-551. [7] 单晓宇, 任高峰. 施工场地扬尘排放运移特征研究[J]. 工业安全与环保, 2019, 45(10): 56-61. doi: 10.3969/j.issn.1001-425X.2019.10.015 [8] 田刚, 李钢, 闫宝林, 等. 施工扬尘空间扩散规律研究[J]. 环境科学, 2008, 29(1): 259-262. doi: 10.3321/j.issn:0250-3301.2008.01.043 [9] 田刚, 黄玉虎, 李钢. 四维通量法施工扬尘排放模型的建立与应用[J]. 环境科学, 2009, 30(4): 1003-1007. doi: 10.3321/j.issn:0250-3301.2009.04.011 [10] 赵普生, 冯银厂, 张裕芬, 等. 建筑施工扬尘排放因子定量模型研究及应用[J]. 中国环境科学, 2009, 29(6): 567-573. doi: 10.3321/j.issn:1000-6923.2009.06.002 [11] 刘嘉明, 狄育慧, 梅源, 等. 西安市夜间土方工程施工扬尘排放特征分析[J]. 制冷与空调, 2019, 33(3): 332-336. [12] 王荣. 成都市某工地施工扬尘排放特征研究[J]. 绿色科技, 2017, 20(2): 41-42. [13] 肖晗, 杨晓春, 吴其重, 等. 西安市建筑施工扬尘排放的模型估算[J]. 环境科学学报, 2019, 39(1): 222-228. [14] 黄天健. 建筑工程施工阶段扬尘监测及健康损害评价[D]. 北京: 清华大学, 2013. [15] 于瑞莲, 郑权, 刘贤荣, 等. 南昌市扬尘PM2.5中多环芳烃的来源解析及健康风险评价[J]. 环境科学, 2019, 40(4): 138-145. [16] LIU W, TANG P T, LI K, et al. Demolition dust formation, diffusion mechanism and monitoring quantitative research on demolition of existing buildings[J]. Applied Ecology and Environmental Research, 2019, 17(6): 14543-14559. [17] 郑云海, 田森林, 李林, 等. 基于表面活性剂的施工扬尘抑尘剂及其性能[J]. 环境工程学报, 2017, 11(4): 2391-2396. doi: 10.12030/j.cjee.201510203 [18] 彭长明. 美加: 东部假日小区建设项目施工扬尘分析与控制[D]. 镇江: 江苏大学, 2011. [19] 许栋, 张博曦, 及春宁, 等. 防风网扬尘庇护区湍流流场模拟数值边界条件[J]. 环境工程学报, 2018, 12(10): 115-122. [20] 张子文, 杨帆, 吴文豪, 等. 输煤皮带巷运煤量对扬尘运移扩散影响的数值模拟[J]. 环境工程学报, 2017, 11(5): 2967-2976. doi: 10.12030/j.cjee.201511209 [21] 田刚, 李建民, 李钢, 等. 建筑工地大气降尘与总悬浮颗粒物相关性研究[J]. 环境科学, 2007, 28(9): 1941-1943. doi: 10.3321/j.issn:0250-3301.2007.09.007 [22] 胡伟成, 杨庆山, 张建. 多国规范山地风速地形修正系数对比研究[J]. 工程力学, 2018, 35(10): 203-211. doi: 10.6052/j.issn.1000-4750.2017.11.0897 [23] VRANCKX S, VOS P, MAIHEU B, et al. Impact of trees on pollutant dispersion in street canyons: A numerical study of the annual average effects in Antwerp, Belgium[J]. Science of the Total Environment, 2015, 532(1): 474-483. [24] 刘洪涛, 杜敏. 方管内微细颗粒沉积特性CFD预测[J]. 居舍, 2018, 21(28): 47-48. [25] 范武波, 陈军辉, 唐斌雁, 等. 成都市施工扬尘排放特征研究[J]. 中国环境科学, 2020, 40(9): 3767-3775. doi: 10.3969/j.issn.1000-6923.2020.09.007 [26] 赵勇. 市政工程施工地周边颗粒污染物扩散特征[J]. 生态环境学报, 2010, 19(11): 2625-2628. doi: 10.3969/j.issn.1674-5906.2010.11.018 [27] 郭默. 基于BP神经网络的施工扬尘量化建模研究[D]. 兰州: 兰州大学, 2010. [28] 李婕, 毛鹏, 魏嘉玮, 等. 建筑施工扬尘的健康经济损失评估[J]. 土木工程与管理学报, 2018, 35(6): 212-218. [29] 樊世星. 高瓦斯易自燃采空区瓦斯与遗煤自燃共生灾害研究[D]. 合肥: 安徽建筑大学, 2016. [30] 肖峻峰, 许峰, 樊世星, 等. 大断面综掘巷道长压短抽条件下粉尘运移模拟[J]. 中国安全科学学报, 2017, 27(2): 127-132. [31] 建筑结构荷载规范: GB 50009-2012[S]. 北京: 中国建筑工业出版社, 2012. [32] RAMPONI R, BLOCKEN B. CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters[J]. Building and Environment, 2012, 53(1): 34-48. [33] RICHARDS P J, NORRIS S E. Appropriate boundary conditions for computational wind engineering models revisited[J]. Journal of Wind Engineering Industrial Aerodynamics, 2011, 99(4): 257-266. doi: 10.1016/j.jweia.2010.12.008 [34] 陈慧敏, 冯星泰, 王凤杰, 等. 不同因素作用下坦克行驶扬尘浓度分布规律数值模拟[J]. 兵工学报, 2018, 39(10): 1901-1909. doi: 10.3969/j.issn.1000-1093.2018.10.004 [35] 国家环境保护总局. 环境空气质量标准: GB 3095-1996[S]. 北京: 中国环境科学出版社, 1996. [36] 国家环境保护总局. 环境空气质量标准: GB 3095-2012[S]. 北京: 中国环境科学出版社, 2012. [37] 邓济通, 黄远东, 张强. 围栏高度对施工扬尘迁移扩散影响的数值模拟研究[J]. 环境工程, 2014, 32(4): 83-86. [38] 陈永伟, 张策, 王夏华. 一种估计和检验排序模型中结构变化的方法及应用[J]. 数量经济技术经济研究, 2017, 34(8): 120-137.