-
原位化学氧化是通过原位注射或添加氧化剂与污染物反应达到修复污染土壤和地下水的目的[1]。众多氧化剂中,过硫酸盐(PS)因产生的自由基氧化能力强、对环境友好等优点被广泛应用于有机污染土壤和地下水的修复[2-3]。通常情况下,PS可通过加热[4]、紫外照射[5]或过渡金属离子[6]等方式活化而产生硫酸根自由基(
${\rm{SO}}_4^{ \cdot - }$ )和羟基自由基(·OH)[7],以实现有机污染物的高效去除。但针对有机污染土壤和地下水原位化学氧化修复,以上活化方式均存在一定缺陷。例如,加热费用比较昂贵、能耗高;紫外照射活化不适合土壤修复等[8]。相比传统PS活化方式,土壤和地下水基质活化PS降解有机污染物更符合当前绿色修复理念[9-10]。过硫酸盐在25 ℃时的半衰期约为600 d,因而可以传输到其他氧化物质不易到达的污染源区和迁移距离较远的污染羽,但传统活化方式对PS的影响范围有限,因此,土壤和地下水基质对PS的活化对土壤和地下水修复更具优势[11]。土壤中含有大量的Fe/Mn矿物、天然有机质和钒矿物。有研究发现Fe/Mn矿物和天然有机质均可有效活化PS降解有机污染物[12-14],例如,Fe/Mn矿物存在时PS产生
${\rm{SO}}_4^{ \cdot - }$ 和·OH的速率相比无Fe/Mn矿物存在时提高了2~20倍。钒(V)是土壤中普遍存在的微量元素,平均含量约为90 mg·kg−1[15-16];同时V也是一种变价金属,主要以+3、+4、+5价的形式存在于土壤环境中[17]。最近,FANG等[18]考察了不同钒矿物存在时H2O2对污染物的降解,发现在水溶液和泥浆中钒矿物均能有效催化H2O2的分解,达到高效降解邻苯二甲酸二乙酯的目的。综合以上结果可推断,采用PS原位化学氧化修复土壤或地下水时,钒矿物可能会加速PS的分解,有效促进污染物的降解,缩短修复时间。但迄今为止,有关钒矿物对PS降解有机污染物的影响研究较少,其机理也不清楚。2,4-二硝基甲苯(2,4-DNT)作为重要的化工原料,广泛用于医药、染料、农药等行业,在生产、储运和使用过程中如发生渗漏、溢出等事故,则会严重污染土壤和地下水,从而对环境和人体健康造成较大危害。鉴于上述原因,该物质已被列为美国EPA、欧盟以及我国所制定的优先控制有毒有机污染物[19]。基于此,本研究以2,4-DNT为目标污染物,考察3种钒氧化物对PS降解2,4-DNT的影响,并借助自由基淬灭实验和电子自旋共振技术(ESR)阐述2,4-DNT降解过程中的反应机制;随后研究了钒氧化物浓度、PS浓度和初始pH对PS降解2,4-DNT的影响,以期为土壤和地下水基质在PS原位化学氧化中的应用提供参考。
钒氧化物对过硫酸盐降解2,4-二硝基甲苯的影响
Impacts of vanadium oxide on the degradation of 2,4-dinitrotoluene by persulfate
-
摘要: 钒是土壤中普遍存在的微量元素,钒氧化物对过硫酸盐(PS)降解有机污染物的影响及作用机制目前还不明确。以三氧化二钒(V2O3)、二氧化钒(VO2)和五氧化二钒(V2O5)为研究对象,探究了不同PS/钒氧化物体系对2, 4-二硝基甲苯(2, 4-DNT)的降解性能和相关机理。结果表明:不同PS/钒氧化物体系对2, 4-DNT的降解性能具有显著差别,其中PS/V2O3体系表现出较强的氧化能力;在反应10 h后,PS/V2O3体系中2, 4-DNT的降解率为77.2%,且准一级动力学模型可以很好地描述PS/V2O3体系对2, 4-DNT的降解过程。电子自旋共振分析和自由基淬灭实验结果表明,羟基自由基是降解2, 4-DNT的主要自由基。V2O3浓度、PS浓度和初始pH是影响PS/V2O3体系降解2, 4-DNT的重要因素。2, 4-DNT的降解率随V2O3含量升高而先升高后降低,在V2O3 为5.0 mmol·L−1时,2, 4-DNT的降解率最高(91.70%);随着PS浓度的升高,在PS/V2O3体系中2, 4-DNT的降解率亦显著提升;当初始pH分别为3.0、5.0、7.0和9.0时,反应10 h后,V2O3活化PS对2, 4-DNT的降解率分别为85.91%、80.07%、80.72%和85.72%。以上研究结果可为进一步明确土壤和地下水基质对过硫酸盐原位化学氧化的影响提供参考。Abstract: Vanadium is a common trace element in soil; the effects and mechanisms of vanadium oxides on organic degradation by activated persulfate (PS) are still unclear. In this study, the vanadium trioxide (V2O3), vanadium dioxide (VO2), and vanadium pentoxide (V2O5) were selected to investigate the performance and related mechanism of 2,4-dinitrotoluene (2, 4-DNT) degradation by the PS/V2O3, PS/VO2, and PS/V2O5 systems. The results showed that these three systems had significant different performance of degradation, and the PS/V2O3 system presented stronger oxidation capacity than other two systems. When the reaction time was 10 h, the degradation efficiency of 2,4-DNT was 77.2%, and its degradation kinetics could be well fitted by the pseudo-first model. The electron spin resonance analysis and quenching experiments indicated that hydroxyl radicals were the dominant reactive species for 2,4-DNT degradation by PS/V2O3 oxidation. V2O3 concentration, PS concentration, and initial pH were the important factors affecting the degradation of 2,4-DNT by PS/V2O3 oxidation. The degradation efficiency of 2, 4-DNT first increased and then decreased with the increase of V2O3 concentration, and the degradation efficiency of 2, 4-DNT reached the highest value of 91.70% at 5.0 mmol·L−1 V2O3; The degradation of 2, 4-DNT in the PS/V2O3 system increased significantly with the increase of PS concentration. At the initial pH of 3.0, 5.0, 7.0 and 9.0, the degradation efficiencies of 2, 4-DNT by 10h oxidation reaction with V2O3 activated PS were 85.91%, 80.07%, 80.72% and 85.72%, respectively. The results provide a theoretical basis for further clarifying the effects of soil and groundwater substrates on in situ chemical oxidation of persulfate.
-
Key words:
- soil remediation /
- vanadium oxides /
- persulfate /
- 2,4-DNT /
- hydroxyl radical
-
-
[1] WATTS R J, TEEL A L. Treatment of contaminated soils and groundwater using ISCO[J]. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2006, 10(1): 2-9. doi: 10.1061/(ASCE)1090-025X(2006)10:1(2) [2] YEN C H, CHEN K F, KAO C M, et al. Application of persulfate to remediate petroleum hydrocarbon-contaminated soil: Feasibility and comparison with common oxidants[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2097-2102. [3] TUGBA O H, IDIL A A. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16. doi: 10.1016/j.cej.2012.11.007 [4] 李婷婷. 热活化过硫酸盐体系降解甲硝唑的研究[D]. 长春: 吉林大学, 2019. [5] FANG J Y, SHANG C. Bromate formation from bromide oxidation by the UV/persulfate process[J]. Environmental Science & Technology, 2012, 46(16): 8976-8983. [6] ANIPSITAKIS G P, DIONYSIOU D D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712. [7] HOUSE D A. Kinetics and mechanism of oxidations by peroxydisulfate[J]. Chemical Reviews, 1961, 62(3): 185-203. [8] 付冬彬, 陈盈盈, 王广生, 等. 超声联合热活化过硫酸盐处理垃圾渗滤液[J]. 水处理技术, 2019, 45(12): 125-128. [9] KANWARTEJ S S, NEIL R T, JIM B F. Persistence of persulfate in uncontaminated aquifer materials[J]. Environmental Science & Technology, 2010, 44(8): 3098-3104. [10] AHMAD M, TEEL A L, WATTS R J. Mechanism of persulfate activation by phenols[J]. Environmental Science & Technology, 2013, 47(11): 5864-5871. [11] LIU H Z, BRUTON T A, DOYLE F M, et al. In situ chemical oxidation of contaminated groundwater by persulfate: Decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials[J]. Environmental Science & Technology, 2014, 48(17): 10330-10336. [12] TEEL A L, ELLOY F C, WATTS R J. Persulfate activation during exertion of total oxidant demand[J]. Chemosphere, 2016, 158: 184-192. doi: 10.1016/j.chemosphere.2016.05.055 [13] LIU H Z, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: Stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2016, 50(2): 890-898. [14] LI W, OROZCO R, CAMARGOS N, et al. Mechanisms on the impacts of alkalinity, pH, and chloride on persulfate-based groundwater remediation[J]. Environmental Science & Technology, 2017, 51(7): 3948-3959. [15] TENG Y G, YANG J, SUN Z J, et al. Environmental vanadium distribution, mobility and bioaccumulation in different land-use Districts in Panzhihua Region, SW China[J]. Environmental Monitoring and Assessment, 2011, 176(1/2/3/4): 605-620. doi: 10.1007/s10661-010-1607-0 [16] BITTON G, GARLAND E, KONG I C, et al. A direct solid-phase assay specific for heavy metal toxicity. I. methodology[J]. Journal of Soil Contamination, 2008, 5(4): 385-394. [17] PANICHEV N, MANDIWANA K, MOEMA D, et al. Distribution of vanadium(V) species between soil and plants in the vicinity of vanadium mine[J]. Journal of Hazardous Materials, 2006, 137(2): 649-653. doi: 10.1016/j.jhazmat.2006.03.006 [18] FANG G D, DENG Y M, HUANG M, et al. A mechanistic understanding of hydrogen peroxide decomposition by vanadium minerals for diethyl phthalate degradation[J]. Environmental Science & Technology, 2018, 52(4): 2178-2185. [19] SPANGGORD R J, SPAIN S F, NISHINA S F, et al. Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp[J]. Applied and Environmental Microbiology, 1991, 77: 2444-2448. [20] LI Q Q, HUANG X C, SU G J, et al. The regular/persistent free radicals and associated reaction mechanism for the degradation of 1,2,4-trichlorobenzene over different MnO2 polymorphs[J]. Environmental Science & Technology, 2018, 52(22): 13351-13360. [21] HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents[J]. Process Safety and Environmental Protection, 1998, 76(4): 332-340. doi: 10.1205/095758298529696 [22] FANG G D, CHEN X R, WU W H, et al. Mechanisms of interaction between persulfate and soil constituents: Activation, free radical formation, conversion, and identification[J]. Environmental Science & Technology, 2018, 52(24): 14352-14361. [23] HUSSAIN I, LI M Y, ZHANG Y Q, et al. Efficient oxidation of arsenic in aqueous solution using zero valent iron-activated persulfate process[J]. Journal of Environmental Chemical Engineering, 2017, 5(4): 3883-3890. [24] DHAKA S, KUMAR R, KHAN M A, et al. Aqueous phase degradation of methyl paraben using UV-activated persulfate method[J]. Chemical Engineering Journal, 2017, 321: 11-19. doi: 10.1016/j.cej.2017.03.085 [25] JI Y F, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics[J]. Science of the Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008 [26] FANG G D, WU W H, LIU C, et al. Activation of persulfate with vanadium species for PCBs degradation: A mechanistic study[J]. Applied Catalysis B: Environmental, 2017, 202: 1-11. doi: 10.1016/j.apcatb.2016.09.006 [27] WANG S Z, WANG J L. Comparative study on sulfamethoxazole degradation by Fenton and Fe(II)-activated persulfate process[J]. RSC Advances, 2017, 7(77): 48670-48677. doi: 10.1039/C7RA09325J [28] DING J F, SHEN L L, YAN R P, et al. Heterogeneously activation of H2O2 and persulfate with goethite for bisphenol A degradation: A mechanistic study[J]. Chemosphere, 2020, 261: 127715. doi: 10.1016/j.chemosphere.2020.127715 [29] XU X M, ZONG S Y, CHEN W M, et al. Comparative study of Bisphenol A degradation via heterogeneously catalyzed H2O2 and persulfate: Reactivity, products, stability and mechanism[J]. Chemical Engineering Journal, 2019, 369: 470-479. doi: 10.1016/j.cej.2019.03.099 [30] PENNINGTON D E, HAIM A. Stoichiometry and mechanism of the chromium(II)-peroxydisulfate reaction[J]. Journal of the American Chemical Society, 1968, 90(14): 3700-3704. doi: 10.1021/ja01016a017 [31] BUXTON G V, BARLOW S, MCGOWAN S, et al. The reaction of the ${\rm{SO}}_3^{ \cdot - }$ radical with FeII in acidic aqueous solution: A pulse radiolysis study[J]. Physical Chemistry Chemical Physics, 1999, 1(1): 3111-3115. doi: 10.1039/a901735f