-
燃煤汞污染是目前面临的重要污染问题之一[1]。烟气中的汞主要以3种形式存在:颗粒态汞Hgp、氧化态汞Hg2+和单质汞Hg0[2]。Hgp可随飞灰一起被电除尘器捕集[3];Hg2+性质稳定,易溶于水,可通过湿法脱硫系统脱除[4-6];而Hg0不溶于水且易挥发,现有污染控制设备无法直接将其脱除[7-9]。目前常用的脱除Hg0方法有吸附法和湿式氧化法[10]。其中,氯系氧化剂氧化性强,具有较强脱除效率,同时有良好的选择性,受到研究者的广泛关注。MINDAL等[11]发现,NaClO氧化剂能有效氧化脱除Hg0。赵毅等[12-13]研究了NaClO2氧化脱汞,最优条件下脱汞效率为65%;除单一氧化剂外,复合氧化剂能进一步提高脱汞性能。阮长超[14]利用NaClO/NaClO2、NaClO2/H2O2复合吸收液进行脱汞研究,其最优脱汞效率达到90%。
上述研究结果表明,单一或复合型氯酸盐系列氧化剂均具有较好的氧化脱汞能力。但目前开发的氯酸盐脱汞氧化剂成本昂贵,在降低成本的同时兼顾实现资源化将具有重要意义[15-16]。我国现有大型燃煤电厂90%以上采用石灰石-石膏湿法脱硫,利用现有脱硫设备实现烟气高效除汞是最为经济合理的途径[17-18]。石灰石-石膏湿法脱硫产生的脱硫废水氯离子含量高[19-20],是目前的治理难点。钱凯凯[21]采用双膜三室法对高氯离子含量脱硫废水进行电解[22-23],其电解产生的电解产物HClO和Cl2可作为经济高效的脱汞氧化剂,可在实现资源循环利用的同时降低氧化脱汞的成本。
本研究以脱硫废水电解产物活性氯(HClO和Cl2)为脱汞氧化剂,在自制鼓泡反应器中,探究其脱除Hg0能力,考察了电解产物活性氯浓度、反应温度、pH等参数对氧化Hg0的影响,以期为脱硫废水资源化利用以及WFGD同时脱硫脱汞提供参考。
以脱硫废水电解产物活性氯为氧化剂的湿法脱汞工艺
Experimental study on wet demercury removal by active chlorine electrolysis products in desulfurization wastewater
-
摘要: 采用脱硫废水电解产物活性氯(HClO和Cl2)作为氧化剂,在自制鼓泡反应器中研究反应温度、pH、入口汞浓度、NO浓度、SO2浓度等主要参数对Hg0氧化效果的影响,并简要探究其反应机理。结果表明,电解产物活性氯能有效促进Hg0的氧化脱除,反应中最佳HClO浓度为4 mmol·L−1,Cl2质量浓度为0.4 μg·m−3,其最适宜反应温度为45 ℃;酸性条件有助于Hg0的氧化吸收,最适宜氧化的pH为4.35~6.04;Hg0氧化效率随SO2质量浓度增加呈现先升高后降低的趋势,其脱除率最高可达87.46%。NO的存在对Hg0氧化有一定的促进作用,该方法对不同入口汞浓度有较强适应性。本研究结果可为WFGD同步脱硫脱汞提供参考。Abstract: The effects of the main parameters such as reaction temperature, pH, inlet mercury concentration, NO concentration and SO2 concentration on the oxidation effect of Hg0 were studied in self-made bubble reactors using activated chloride (HClO and Cl2) as oxidants in desulfurized wastewater electrolytic products, and the reaction mechanism was briefly explored. The results showed that the active chlorine of the electrolytic product effectively promoted the oxidation and removal of Hg0, determined that the optimal HClO concentration was 4 mmol·L−1, the Cl2 concentration was 0.4 μg·m−3, and the optimum reaction temperature was 45 °C; acidic conditions were conducive to the oxidation absorption of Hg0, which was the most suitable. The oxidation pH range was 4.35~6.04; the oxidation efficiency of Hg0 increased first and then decreased with the increase of SO2 concentration, with a removal rate of 87.46%. The existence of NO had a certain promotional effect on the oxidation of Hg0. This method had strong adaptability to different inlet mercury concentrations and a good industrial application prospect. The results of this study can provide a reference for the simultaneous desulfurization and mercury removal of WFGD.
-
-
[1] LIU Y X, ZHOU J F, WANG Q, et al. A novel process for removal of Hg0 from flue gas using urea/persulfate activated by high temperature in a spray reactor[J]. Chemical Engineering Research & Design, 2015, 104: 828-834. [2] 马宵颖, 赵毅. 类过氧化物酶Fe-TAML催化H2O2脱除烟气中的单质汞[J]. 化工环保, 2018, 38(4): 425-430. doi: 10.3969/j.issn.1006-1878.2018.04.011 [3] 王运军, 段钰锋, 杨立国, 等. 燃煤电站布袋除尘器和静电除尘器脱汞性能比较[J]. 燃料化学学报, 2008, 36(1): 7. [4] ZHAO Y, QI M, HAO R L, et al. A novel catalytic oxidation process for removing elemental mercury by using diperiodatoargentate (Ⅲ) in the catalysis of trace ruthenium (Ⅲ)[J]. Journal of Hazardous Materials, 2020, 381(5): 120964. [5] WANG Y J, LIU Y, Wu Z B, et al. Experimental study on the absorption behaviors of gas phase bivalent mercury in Ca-based wet flue gas desulfurization slurry system[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 902-907. [6] 商永强, 赵永椿. 磁性吸附剂脱汞机理及技术研究进展[J]. 华电技术, 2019, 41(12): 8-15. [7] LI Y, ZHANG J Y, ZHAO Y C, et al. Volatility and speciation of mercury during pyrolysis and gasification of five Chinese coals[J]. Energy & Fuels, 2011, 25(9): 3988-3996. [8] DRANGA B A, LAZAR L, KOESER H. Oxidation Catalysts for Elemental Mercury in Flue Gases-A Review[J]. Catalysts, 2012, 2(1): 139-170. doi: 10.3390/catal2010139 [9] 吴笑男, 卢金荣, 梁英华. 硅胶复合材料吸附重金属汞的研究进展[J]. 化工环保, 2017, 37(6): 616-621. doi: 10.3969/j.issn.1006-1878.2017.06.003 [10] SJOSTROM S, EBNER T, LEY T, et al. Assessing sorbents for mercury control in coal-combustion flue gas.[J]. Journal of the Air & Waste Management Association, 2002, 52(8): 902-911. [11] MONDAL M K, CHELLUBOYANA V R. New experimental results of combined SO2 and NO removal from simulated gas stream by NaClO as low-cost absorbent[J]. Chemical Engineering Journal, 2013, 217: 48-53. doi: 10.1016/j.cej.2012.12.002 [12] ZHAO Y, JIE Y, MA X Y. Absorption behavior and removal of gaseous elemental mercury by sodium chlorite solutions[J]. Journal of Environment Engineering, 2012, 138(6): 620-624. doi: 10.1061/(ASCE)EE.1943-7870.0000519 [13] ZHAO Y, GUO T X, CHEN Z Y, et al. Simultaneous removal of SO2 and NO using M/NaClO2 complex absorbent[J]. Chemical Engineering Journal, 2010, 160(1): 42-47. doi: 10.1016/j.cej.2010.02.060 [14] 阮长超. 氧化剂协同石灰石湿法烟气脱硫脱汞实验研究[D]. 武汉: 华中科技大学, 2017. [15] 李兵, 王宏亮, 许月阳, 等. 燃煤电厂湿法脱硫设施对烟气中微量元素的减排特性[J]. 煤炭学报, 2015, 40(10): 2479-2483. [16] 郑逸武, 段钰锋, 汤红健, 等. 燃煤烟气污染物控制装置协同脱汞特性研究[J]. 中国环境科学, 2018, 38(3): 862-870. doi: 10.3969/j.issn.1000-6923.2018.03.009 [17] 武成利. 燃煤烟气中汞再析出及抑制研究[D]. 淮南: 安徽理工大学, 2010. [18] 梁大镁. 湿法脱硫系统协同脱除汞的实验研究[D]. 武汉: 华中科技大学, 2011. [19] 刘政修, 李磊, 王斌. 燃煤电厂锅炉烟气湿法脱硫废水深度处理工艺选择[J]. 全面腐蚀控制, 2016. [20] 李行, 陆海伟, 黄河清. 燃煤电厂湿法脱硫废水零排放处理工艺[J]. 广东化工, 2018, 45(18): 2. [21] 钱凯凯. 电化学处理脱硫废水协同去除燃煤烟气零价汞的研究[D]. 武汉: 武汉大学, 2020. [22] 刘诗杰. 复合催化材料制备及其在高氯电厂烟气脱硫废水处理中应用研究[D]. 武汉: 湖北大学, 2018. [23] 吴火强, 刘亚鹏, 王璟, 等. 脱硫废水膜浓缩浓水电解制氯工艺分析[J]. 热力发电, 2016, 45(9): 109-115. [24] LAUDAL D L, BROWN T D, NOTT B R. Effects of flue gas constituents on mercury speciation[J]. Fuel Processing Technology, 2000, 65(99): 157-165. [25] 能子礼超, 杨红, 海来伍加, 等. 次氯酸钾氧化去除烟气中单质汞的反应机理[J]. 化工环保, 2020, 40(5): 507-511. [26] BYOUN S K, SHIN D N, MOON I S, et al. Quick vaporization of sprayed sodium hypochlorite (NaClO(aq)) for simultaneous removal of nitrogen oxides (NOx), sulfur dioxide (SO2), and mercury (Hg0)[J]. Journal of the air & waste management association, 2019, 69(7): 857-866. [27] KACZUR J J. Oxidation chemistry of chloric acid in NOx/SOx and air toxic metal removal from gas streams[J]. Environmental Progress & Sustainable Energy, 2010, 15(4): 245-254. [28] SADA E, KUMAZAWA H, YAMANAKA Y, et al. Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide.[J]. Journal of chemical engineering of Japan, 1978, 11(4): 276-282. doi: 10.1252/jcej.11.276 [29] MARTIN K, GONZALEZ E, ZHOU C Q, et al. Elemental mercury removal using a wet scrubber[J]. Office of Scientific & Technical Information Technical Reports, 1999, 61(1/2): 180-185. [30] 马宵颖. 液相烟气脱汞实验研究[D]. 保定: 华北电力大学(河北), 2008. [31] WANG J, ZHONG W Q. Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent[J]. Chinese Journal of Chemical Engineering, 2016, 24(8): 1104-1111. doi: 10.1016/j.cjche.2016.04.005 [32] GUSTIN M, LADWIG K. Laboratory investigation of Hg release from flue gas desulfurization products[J]. Environmental Science & Technology, 2010, 44(10): 4012. [33] O’DRISCOLL N J, SICILIANO S D, LEAN DRS. Continuous analysis of dissolved gaseous mercury in freshwater lakes[J]. Science of the Total Environment, 2003, 304(1/2/3): 285-294. [34] WANG Q F, LIU Y, WU ZB. Laboratory Study on Mercury Release of the Gypsum from the Mercury Coremoval Wet Flue Gas Desulfurization System with Additives[J]. Energy & Fules, 2018, 32(2): 1005-1011. [35] ZHAO Y, HAO R L, QI M. Integrative process of preoxidation and absorption for simultaneous removal of SO2, NO and Hg0[J]. Chemical Engineering Journal, 2015, 269: 159-167. doi: 10.1016/j.cej.2015.01.064 [36] I FÁBIÁN, D SZÜCS, GORDON G. Unexpected Phenomena in the Mercury(II) Chlorite Ion System: Formation and Kinetic Role of the HgClO2+ Complex[J]. Journal of Physical Chemistry A, 2000, 104(34): 8045-8049. doi: 10.1021/jp0015832