-
建筑泥浆是地基钻孔、盾构掘进和地下连续墙开挖等建筑施工必须的辅助施工材料。随着城市建设的推进,建筑施工产生的废弃泥浆产量逐年攀升,目前年产量已达3×108 m3以上[1]。建筑泥浆主要由粘土、膨润土为主要原料掺水配制而成,为了满足泥浆粘性、流动性、比重等技术要求,常掺入羧甲基纤维素(CMC)、碳酸钠、氢氧化钠等化学调理剂,以增加泥浆的粘性和流动性[2-3]。在施工过程中,地层沉积物混入泥浆中,进一步导致建筑泥浆组成复杂。总体来看,建筑泥浆具有高含水率、高碱性、重金属污染等特征[4]。废弃建筑泥浆已成为建筑施工产量最大、处置困难、环境污染最严重的建筑垃圾之一。
为了推行绿色施工,部分地区对建筑泥浆的环保处置提出了更高的要求。南京、温州、绍兴、宁波等地均颁布了建筑泥浆环保处置管理法规,规定了建筑泥浆必须进行固化处置,不得随意排放[5]。建筑泥浆处置有絮凝脱水沉淀法、机械脱水固化法、石灰干化固结法、热压干燥法等[6-8]。由于效率高、成本低和施工占地面积小的优势,絮凝脱水和机械脱水在实际工程中的应用最为常见。通过筛选泥浆调理剂种类和用量来提升泥浆脱水效率是目前的研究热点。杨春英等[9]研究了3种聚丙烯酰胺(PAM)对废弃建筑泥浆的絮凝调理特性,结果表明,阴离子型聚丙烯酰胺(APAM)作用时间最短,效果最优。梁止水等[10]比较研究了聚合氯化铝(PAC)、聚合硫酸铁(PFS)、聚丙烯酰胺(PAM)等絮凝剂对废弃泥浆泥水分离效果的提升,结果表明,APAM作为絮凝剂的泥水分离效果最佳。高宇等[11]以毛细脱水时间(CST)为评价指标,对比研究了阳离子型聚丙烯酰胺(CPAM)、非离子聚丙烯酰胺(NPAM)和阴离子聚丙烯酰胺(APAM)对废弃泥浆脱水性能的影响,泥浆脱水效果排序为:APAM>NPAM>CPAM>PAC。王东星等[12]则采用无机絮凝剂和有机絮凝剂相结合的方式对钻孔泥浆进行絮凝沉淀脱水处置,结果表明,复合絮凝剂调理后泥浆沉降性能更优。以上研究均表明,调理剂对于泥浆脱水效果的提升有较大影响,复合絮凝剂在泥浆脱水性能提升方面有较大潜力。但是,以上研究多侧重于建筑泥浆脱水性能的探究,对于泥浆处理后尾水和泥饼的污染物含量方面则关注度较小。针对添加碳酸钠或氢氧化钠等添加剂的泥浆,常呈现高碱性、污染复杂的特性,在泥浆处置时不仅要考虑脱水固化效果,还应注意尾水和泥饼的达标排放。用传统的单一有机絮凝剂调理泥浆无法解决尾水碱性超标的问题,难以保证泥浆处置尾水达标排放。目前,关于高碱性泥浆的环保处置研究较少,缺乏可借鉴的工程案例。传统的添加盐酸、硫酸等无机酸中和泥浆碱性虽然简单有效,但是无机酸的采购存储存在一定安全风险,且易造成氯离子或硫酸盐污染[13]。聚合氯化铝(PAC)、聚合氯化铁(PFC)和三氯化铁(FeCl3)是常用无机絮凝剂,且自身会发生水解而呈酸性,具有中和泥浆碱性的能力,环境危害小。磷石膏是磷酸生产中产生的固体废渣,主要成分是二水硫酸钙,含有少量磷酸,呈弱酸性,有部分研究者利用磷石膏固化淤泥泥浆[14]。采用有机絮凝剂PAM与酸性无机调理剂组合使用处理高碱性泥浆具有一定的环保优势。
本研究以龙潭长江大桥建设过程中产生的大体量高碱性废弃建筑泥浆为研究对象,在对泥浆理化性质分析的基础上,采用有机絮凝剂PAM结合酸性无机调理剂开展建筑泥浆脱水性能优化研究,通过室内实验筛选出既能提高泥浆脱水效率,又能降低尾水碱性,保证尾水达标排放的复合调理剂,并揭示调理剂的作用机制,以期为高碱性建筑泥浆的环保处置提供参考。
复合调理剂对废弃建筑泥浆脱水性能的影响
Effect of composite conditioner on dewatering performance of high alkaline construction slurry
-
摘要: 建筑泥浆具有高含水率、高碱性、脱水困难等特性,导致其环保处置困难。采用有机絮凝剂与酸性无机调理剂组成的复合调理剂对废弃建筑泥浆开展了絮凝调理实验,以探究不同药剂组合和用量对废弃建筑泥浆脱水性能的影响。结果表明,建筑泥浆中膨润土、高岭石等50 μm以下细粒粘土颗粒占比达67%以上,颗粒之间相互排斥,难以自然沉淀脱水。使用PAM和PFC组成的复合调理剂对建筑泥浆调理效果最好,PAM和PFC的最适宜投加量分别为100 mg·kg−1和20 g·kg−1。该用量下,泥浆沉降比降低17%,污泥比阻降低46%,尾水和泥饼满足污染排放标准。该复合调理剂的电中和作用、吸附架桥和网捕作用使得泥浆中细粒粘土颗粒聚集成大颗粒聚团,排出泥浆颗粒间的水分。PFC能够中和泥浆碱性,调节尾水pH至9以下。该复合调理剂能达到提升泥浆脱水性能和保证尾水环保达标排放的效果,提升建筑泥浆环保处置水平。Abstract: The characteristics of high moisture content, high alkalinity and difficult dehydration of construction slurry make it difficult to implement environmental treatment of construction slurry. In this study, the compound conditioner composed of organic flocculant and acidic inorganic conditioner was used to carry out flocculation conditioning experiment on high alkaline construction slurry, and the effects of different reagent combinations and dosage on the dehydration performance of construction mud were explored. The results showed that the proportion of fine clay particles less than 50 μm such as bentonite and kaolinite in construction slurry is more than 67%. Slurry particles were mutually exclusive, so it was difficult to precipitate and dehydrate naturally. The composite reagent composed of PAM and PFC had the best dewatering effect on construction slurry. The optimum dosage of PAM and PFC were 100 mg·kg−1 and 20 g·kg−1, respectively. Under this dosage, the sedimentation ratio of slurry was reduced by 17%, the sludge specific resistance of slurry is reduced by 46%, and the tail water and mud cake meet the pollution discharge standard. The electric neutralization, adsorption bridging and net trapping of the composite reagent made the fine clay particles in the slurry aggregate into large particle clusters, so as to discharge the water in the gap between slurry particles. PFC can neutralize the alkalinity of slurry and adjust the pH of tail water below 9. The compound conditioner can achieve the dual effects of improving the dewatering performance of slurry and ensuring the discharge of tailwater up to the environmental protection standard, so as to improve the environmental protection disposal level of construction slurry.
-
表 1 建筑泥浆基本理化性质
Table 1. Physical and chemical properties of construction slurry
含水率/% pH 有机质含量/% 密度/(g·cm−3) SV30/% 液限/% 塑限/% 塑性指数/% 85 12.1 0.5 1.15 94 54.1 23.5 30.6 表 2 建筑泥浆主要成分的质量分数
Table 2. Mass fraction of main components in construction slurry
% SiO2 CaO Al2O3 Fe2O3 K2O MgO TiO2 Na2O SO3 44.28 19.70 17.06 10.03 3.22 2.31 1.24 0.83 0.61 表 3 尾水中污染物质量分数
Table 3. Pollutant mass content in tail water
mg·L−1 调理剂种类 Fe Al Cu Zn Pb Cd Cr As Cl− SO $ _4^{2{\rm{ - }}}$ PAM+PAC 0.017 0.160 0.008 0.003 N.D. N.D. N.D. 0.005 39.94 29.14 PAM+PFC 0.074 0.002 0.015 0.004 N.D. N.D. N.D. 0.007 38.72 27.84 PAM+FeCl3 0.340 N.D. 0.004 0.002 N.D. N.D. N.D. 0.001 465.80 26.54 PAM+磷石膏 0.018 0.006 0.026 0.006 N.D. 0.002 N.D. 0.008 31.50 68.12 注:N.D.表示未检出。 表 4 泥饼EDS能谱分析结果
Table 4. EDS spectrum analysis results of mud cake
调理剂种类 元素质量分数/% O Na Mg Al Si P S Cl K Ca Fe 原始泥浆 56.61 0.38 2.29 6.35 17.85 0 0 0 0.22 5.26 11.04 PAM+PAC 52.09 0.14 2.67 12.30 14.88 0 0.06 0.74 0.29 4.81 12.02 PAM+PFC 48.16 0.23 2.39 8.62 17.00 0.32 0.45 0.52 2.92 3.14 16.25 PAM+FeCl3 49.94 0.23 1.30 9.27 16.50 0.19 0.11 1.51 1.29 1.62 18.03 PAM+磷石膏 53.02 0.08 2.20 6.49 15.05 0.15 2.72 0.06 0.97 12.66 6.61 -
[1] 平洋, 油新华, 马庆松, 等. 工程废弃泥浆快速无害化处理研究[J]. 施工技术, 2020, 49(7): 114-116. [2] 李武, 李鹤年. 珠江黄埔大桥南锚碇地下连续墙成槽施工泥浆使用技术[J]. 桥梁建设, 2007(3): 64-67. doi: 10.3969/j.issn.1003-4722.2007.03.018 [3] 赵洪洲, 张明俭. 饱和粉细砂地层中泥水平衡盾构施工泥浆配制室内试验研究[J]. 铁道建筑, 2020, 60(8): 77-81. doi: 10.3969/j.issn.1003-1995.2020.08.17 [4] 江涌. 钻孔灌注桩污染场地中施工与污染泥浆修复研究[J]. 建筑科技, 2020, 4(6): 82-85. doi: 10.3969/j.issn.1007-046X.2020.06.024 [5] 黄俊妤, 张春雷. 城市建筑泥浆的管理现状、污染问题及对策建议[J]. 四川环境, 2019, 38(1): 165-169. [6] 张浩, 李雷. 废弃泥浆合理处置技术分析[J]. 陕西地质, 2020, 38(1): 86-90. doi: 10.3969/j.issn.1001-6996.2020.01.014 [7] ZHANG S, ZHOU M, LANG M, et al. Research and Design on Building Mud of Using Hot-pressing Drying Dehydration[J]. Procedia Environmental Sciences, 2016, 31: 767-777. doi: 10.1016/j.proenv.2016.02.069 [8] 常鸽, 李春杰, 丁光莹, 等. 钱江隧道盾构废弃泥浆的混凝分离[J]. 环境工程学报, 2012, 6(10): 3752-3756. [9] 杨春英, 徐薇, 白晨光. 施工废弃泥浆絮凝脱水试验及机理分析[J]. 环境科技, 2013, 26(5): 15-17. doi: 10.3969/j.issn.1674-4829.2013.05.004 [10] 梁止水, 杨才千, 高海鹰, 等. 建筑工程废弃泥浆快速泥水分离试验研究[J]. 东南大学学报(自然科学版), 2016, 46(2): 427-433. [11] 高宇, 周普玉, 杨霞, 等. 絮凝剂对工程废弃泥浆脱水性能的影响[J]. 环境工程学报, 2017, 11(10): 5597-5602. doi: 10.12030/j.cjee.201611101 [12] 王东星, 伍林峰, 唐弈锴, 等. 建筑废弃泥浆泥水分离过程与效果评价[J]. 浙江大学学报(工学版), 2020, 54(6): 1049-1057. [13] 刘建明, 吴叔兵. 碱性废水处理及回收利用研究进展[J]. 中国资源综合利用, 2008, 26(9): 36-39. doi: 10.3969/j.issn.1008-9500.2008.09.015 [14] 丁建文, 张帅, 洪振舜, 等. 水泥-磷石膏双掺固化处理高含水率疏浚淤泥试验研究[J]. 岩土力学, 2010, 31(9): 2817-2822. doi: 10.3969/j.issn.1000-7598.2010.09.021 [15] 庄雅婷, 黄炎和, 林金石, 等. 崩岗红土层土壤液塑限特性及影响因素研究[J]. 水土保持研究, 2014, 21(3): 208-211. [16] 陈绍斌, 向丽. 复合离子聚合物对絮凝效果的影响分析[J]. 钻采工艺, 2002(5): 113-115. [17] 国家环境保护局. 污水综合排放标准: GB 8978-1996[S]. 北京: 1996. [18] 国家标准化委员会国家市场监督管理总局. 城市污水再生利用 城市杂用水水质: GB/T 18920-2020[S]. 北京: 中国环境科学出版社, 2020. [19] 郑帼, 王彩林, 孙玉. 胶体化泥浆化学固液的分离[J]. 天津工业大学学报, 2017, 36(3): 33-38. doi: 10.3969/j.issn.1671-024x.2017.03.007 [20] 李悦, 李俊才, 汪效祖, 等. 废弃钻孔泥浆快速泥水分离试验研究[J]. 科学技术与工程, 2020, 20(25): 10366-10371. doi: 10.3969/j.issn.1671-1815.2020.25.036 [21] 徐国栋, 吴大志, 王俊. 工程废弃泥浆的絮凝试验研究[J]. 科技通报, 2021, 37(5): 97-103. [22] 徐国想, 阮复昌. 铁系和铝系无机絮凝剂的性能分析[J]. 重庆环境科学, 2001(3): 52-55. [23] 刘梦洁, 李硕, 桑华俭, 等. FeCl3和AlCl3协同絮凝去除焦化废水中氟和有机物[J]. 环境工程学报, 2020, 14(8): 2048-2056. [24] 刘娟, 武耀锋, 张晓慷. 水分散型阳离子聚丙烯酰胺絮凝剂的絮凝性能及其机理[J]. 环境工程学报, 2015, 9(1): 119-124. [25] 谭文峰, 周素珍, 刘凡, 等. 土壤中铁铝氧化物与黏土矿物交互作用的研究进展[J]. 土壤, 2007(5): 726-730. doi: 10.3321/j.issn:0253-9829.2007.05.009 [26] 刘彩凤, 王韦现, 马红亮. 外加氮源影响下铁铝氧化物在土壤氮素转化中的作用[J]. 环境科学研究, 2020, 33(8): 1946-1953. [27] 龙谨, 杨凤龙, 吴钦雪, 等. 磷石膏对土壤的性能影响研究综述[J]. 广州化工, 2021, 49(19): 35-37. doi: 10.3969/j.issn.1001-9677.2021.19.012