-
城市化的发展导致生活垃圾产量急速增加,2020年,我国城市垃圾清运量达2.35×108 t[1]。为充分利用废弃物资源并改善由此带来的环境问题,近年来,我国各城市相继启动了垃圾分类收集和处理工作[2]:即采用“四分法”将生活垃圾分为可回收物、有害垃圾、厨余垃圾及其他垃圾。相较于处理技术明确的可回收物、有害垃圾和其他垃圾,我国厨余垃圾产量巨大(占生活垃圾总量的54.92%,远高于其他国家或地区[3]),存在成分复杂、杂质多、容易腐烂并产生恶臭和病菌等问题,处置利用更为困难。与此同时,厨余垃圾有机质含量高达80%~95%[4],其资源化利用价值不容忽视。
目前,典型的厨余垃圾处置利用技术包括焚烧发电、厌氧发酵、好氧堆肥和填埋等。焚烧发电通过对垃圾进行焚烧获取电力,但厨余垃圾的高含水率会影响焚烧热值且产生二恶英等有害气体[5];厌氧发酵通过厌氧微生物将厨余垃圾降解,并生成甲烷为主的沼气进行利用,发酵后的沼渣亦富含有机质[6],可采用焚烧、堆肥或填埋进行二次利用[7],但整体处理的工艺链较长;好氧堆肥利用微生物将厨余垃圾中的有机质转化为肥料,包括阳光房堆肥和机器成肥[8]等方式,但堆肥的占地面积大且时间周期长;填埋则是直接将厨余垃圾进行填埋,其工艺简单、处理量大,在固废处理上应用广泛,但存在浪费有机资源、污染环境生态的问题[9]。以上处理技术均有一定应用局限性,在推进垃圾分类的背景下,通过合适的方法评估现有厨余垃圾处置利用技术优劣尤为重要。
全生命周期评价方法(Life Cycle Assessment, LCA)能定量评价产品或系统从原材料开采、加工到最终处理全过程的能源、环境表现[10-12],因此被认为是评估固废处置管理的有效方法[13-14],已广泛应用于固废处置技术的评估[15-17]。然而,LCA中的能量转化主要依据热力学第一定律,即只考量了能量数量的变化,而忽视了不同能量的质量差异。因此,SZARGUT等[18]在生命周期的基础上结合热力学第二定律的㶲分析,提出了㶲生命周期分析(Exergy Life Cycle Analysis, ELCA),并以积累㶲消耗(Cumulative Exergy Consumption, CExC)为评价指标,评估了不可逆过程导致的可用能损失[19]。ELCA能用同一物理量量化不同物质、能量的能源消耗,在评价上具有公度性[20]。目前,ELCA在评估热交换器、燃气轮机系统、生物柴油制备等高能耗的能源化工领域实现了一系列应用,能够直观有效比较不同过程的热力学完善程度及优化潜力[21-23],然而,ELCA在厨余垃圾处置利用领域的研究依旧有所欠缺[24-25]。
本研究基于全生命周期思想,采用LCA和ELCA的方法对我国垃圾分类后典型的厨余垃圾处置利用技术进行评价。其中LCA用于量化环境影响,避免仅考虑末端环境排放的局限性;ELCA用于量化能量转化,同时考虑转化过程中附加价值的能量品质差异。所有数据来源现场采样和实地数据分析,减少仅由文献估算数据产生的误差。本研究可为城市管理部门推进固废资源化利用和“无废城市”建设提供参考。
典型厨余垃圾处置利用技术的环境与㶲生命周期评价
Environmental and exergetic life cycle assessment of typical kitchen waste treatment and utilization technologies
-
摘要: 垃圾分类收集后产生的大量厨余垃圾需资源化处理。采用合适的方法进行评估,以选择更环保节能的厨余垃圾处置利用技术尤为重要。典型的厨余垃圾处置利用技术包含以下4类:焚烧发电、厌氧发酵(发酵产生的沼渣可分为焚烧、堆肥或填埋3种处置方式)、好氧堆肥(包括阳光房堆肥及机器成肥)及填埋。通过现场调研采样和实地数据分析,采用环境生命周期评价(LCA)和㶲生命周期评价(ELCA)的方法对4类技术的环境负荷及能量转化进行定量评估。其中,LCA以标准化环境负荷为指标,环境影响程度与其值呈正相关,4类技术的结果从低到高分别为好氧堆肥、厌氧发酵、焚烧发电及填埋。ELCA以积累㶲消耗效率为评价指标,能量转化效率与其值呈正相关,4类技术的结果从高到低分别为好氧堆肥、厌氧发酵、焚烧发电及填埋。2种好氧堆肥方式中,阳光房堆肥的环境负荷更低(−0.366),而机器成肥的积累㶲消耗效率更高(83.53%);3种厌氧发酵沼渣的处置方式中,沼渣堆肥的环境影响(−0.189)和积累㶲消耗效率(35.25%)均表现最佳。填埋在所有技术中环境负荷最高(1.231)且积累㶲消耗效率最低(9.76%)。本研究结果可为厨余垃圾资源化利用方法的选择提供参考。Abstract: With the implementation of the source-separated municipal solid waste collection in China, an increasing amount of kitchen waste is collected and transported separately. Therefore, the treatment and utilization of kitchen waste have become one of the greatest challenges we face. Under such circumstances, thorough investigations to assess an environmentally friendly and energy-efficient treatment and utilization technology of kitchen waste are of great significance. Environmental life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) methods were used to quantitatively assess environmental burden and energy conversion efficiency of four typical kitchen waste treatment and utilization technologies, namely, incineration, anaerobic fermentation (the digestate treatment methods after anaerobic fermentation including incineration, composting or landfill), aerobic composting (including aerobic composting under sunlight and mechanical aerobic composting) and landfill. Data in this research used for the comparison was mainly based on field investigation and sampling. The standardized environmental burden was an indicator of LCA, which was positively correlated with the degree of environmental impact. The results of the four technologies were aerobic composting, anaerobic fermentation, incineration and landfill, from low to high. ELCA was assessed by cumulative exergy consumption efficiency and the energy conversion efficiency is positively correlated with its value. The results of the four technologies from high to low were aerobic composting, anaerobic fermentation, incineration and landfill. Regarding aerobic composting, the sunlight case had a lower environmental impact (−0.366), whereas the cumulative exergy consumption efficiency of mechanical aerobic composting was higher (83.53%). In terms of the digestate treatment methods after anaerobic fermentation, the composting of digestates was the most recommended option, with the best environmental impact (−0.189) and cumulative exergy consumption efficiency (35.25%). The landfill had the highest environmental burden (1.231) and the lowest cumulative exergy consumption efficiency (9.76%) among all technologies. The results obtained from this research could serve as a theoretical basis for the development and application of clean and efficient technology for kitchen waste treatment and utilization.
-
表 1 基于Recipe Midpoint的环境影响类型及特征单位
Table 1. Environment impact categories and characterization unit based on Recipe Midpoint
环境影响类型 特征单位 标准化因子 气候变化(不含生物碳) kg CO2 eq. 1.72×10-4 化石能源消耗 kg oil eq. 1.02×10-3 人体毒性-癌症 kg 1,4-DB eq. 3.39×10-3 人体毒性-非癌症 kg 1,4-DB eq. 4.50×10-7 海洋生态毒性 kg 1,4-DB eq. 4.06×10-7 颗粒物形成 kg PM2.5 eq. 3.91×10-2 水消耗 m3 3.75×10-3 淡水生态毒性 kg 1,4 DB eq. 3.44×10-3 淡水富营养化 kg P eq. 1.54 电离辐射 kBq Co-60 eq. to air 1.43×10-3 土地占用 Annual crop eq.·y 1.62×10-4 海洋富营养化 kg N eq. 2.17×10-1 金属消耗 kg Cu eq. 8.33×10-6 光化学臭氧形成-生态系统 kg NOx eq. 5.63×10-2 光化学臭氧形成-人类健康 kg NOx eq. 4.86×10-2 臭氧消耗 kg CFC-11 eq. 14.2 陆地酸化 kg SO2 eq. 2.44×10-2 陆地生态毒性 kg 1,4-DB eq. 6.11×10-5 注:1)特征单位中的eq.表示标准当量(equivalent),即平均每年每人造成的对应类型环境的影响。 表 2 各系统全生命周期的数据清单(基于处理1 t厨余垃圾)
Table 2. Life cycle data inventory of each system (based on 1t kitchen waste treated)
环节 类型 单位 S1焚烧发电 S2厌氧发酵 S3-a
阳光房堆肥S3-b
机器
成肥S4填埋 a沼渣
焚烧b沼渣
堆肥c沼渣
填埋输入 电力 kWh 23.89 30.27 27.49 26.18 19.98 60.00 1.76 柴油 L 0.86 0.67 0.54 1.05 − — 1.26 絮凝剂 kg — 0.15 0.15 0.34 — — — 氧化铁 kg — 0.22 0.22 0.14 — — — 消石灰 kg 4.51 0.69 — — — — — 活性炭 kg 0.20 0.03 — — — — — 氨水 kg 1.84 0.28 — — — — — HDPE kg — — — 0.09 — — 0.45 输出 电力 kWh 161.99 168.92 144.00 162.80 — — 79.39 肥料 kg — — 53.16 — 200.00 256.00 — 气体污染物 NH3 kg — 9.21×10−4 2.31×10−3 1.95×10−2 — — 1.15×10−2 H2S kg — 3.00×10−4 3.83×10−4 2.98×10−3 4.27×10−4 5.62×10−5 1.15×10−2 CH4 kg — — — 1.71 — — 7.24 N2O kg — 2.91×10−3 2.91E-03 1.34×10−2 — — — NOx kg 3.64×10−1 5.61×10−2 — — — — — SOx kg 4.57×10−1 7.06×10−2 3.81×10−4 1.23×10−3 2.28×10−5 1.91×10−3 — HCl kg 8.34×10−2 1.28×10−2 — — — — — CO kg 1.76×10−1 2.70×10−2 — — — — — 二恶英类 kg TEQ 2.76×10−10 4.25×10−11 — — — — — 污水污染物 NH3−N kg 1.44×10−4 1.52×10−2 1.52×10−2 3.30×10−1 2.34×10−2 2.62×10−4 3.30×10−1 COD kg 1.32×10−3 2.17×10−1 2.17×10−1 6.85×10−1 4.30×10−3 7.25×10−2 6.85×10−1 BOD kg 3.95×10−4 2.54×10−2 2.54×10−2 3.95×10−2 1.80×10−3 2.83×10−2 3.95×10−2 T-N kg 1.54×10−2 3.51×10−2 3.51×10−2 2.75×10−1 3.41×10−2 4.46×10−3 2.75×10−1 T-P kg 7.11×10−6 2.38×10−3 2.38×10−3 2.38×10−3 2.34×10−5 5.12×10−5 2.38×10−3 Cd kg 1.32×10−6 2.90×10−5 2.90×10−5 5.00×10−6 4.37×10−6 2.97×10−5 5.00×10−6 Cu kg 7.64×10−6 3.25×10−5 3.25×10−5 4.90×10−5 1.49×10−5 1.49×10−4 4.90×10−5 Cr kg 1.29×10−6 9.28×10−5 9.28×10−5 1.55×10−6 8.10×10−7 4.46×10−4 1.55×10−6 Pb kg 3.69×10−6 1.16×10−4 1.16×10−4 2.35×10−5 4.37×10−6 2.97×10−4 2.35×10−5 Zn kg 2.82×10−6 4.79×10−4 4.79×10−4 4.50×10−5 9.81×10−5 5.94×10−4 4.50×10−5 Ni kg 1.05×10−5 1.00×10−4 1.00×10−4 1.15×10−4 3.27×10−5 2.97×10−4 1.15×10−4 固渣污染物 Zn to soil kg 3.65×10−2 7.27×10−3 2.15×10−3 4.14×10−2 3.64×10−2 5.34×10−2 3.85×10−1 Cu to soil kg 3.63×10−3 8.37×10−4 1.00×10−3 4.90×10−2 1.07×10−2 1.66×10−2 6.94×10−2 Pb to soil kg 1.72×10−2 1.78×10−3 9.75×10−4 1.03×10−3 1.68×10−2 8.58×10−3 3.00×10−2 Cd to soil kg 1.16×10−3 9.70×10−5 1.70×10−5 8.74×10−5 2.92×10−4 3.58×10−4 4.12×10−4 Cr to soil kg 1.31×10−4 4.63×10−5 6.65×10−4 2.44×10−4 2.13×10−3 1.67×10−2 2.50×10−2 As to soil kg 8.68×10−4 1.49×10−6 2.95×10−4 1.58×10−3 1.19×10−3 2.56×10−3 1.33×10−3 Hg to soil kg 2.72×10−5 1.94×10−5 2.81×10−5 5.28×10−5 — — 5.35×10−4 注:“—”表示该系统无对应物质或能量的输入输出,或未收集到相关数据。 表 3 各物质积累㶲消耗(CExC)及环境消除影响㶲(AbatEx)值
Table 3. Cumulative exergy consumption (CExC) and abatement exergy (AbatEx) value of materials MJ
-
[1] 中华人民共和国住房和城乡建设部. 2020年城乡建设统计年鉴[EB/OL]. [2021-12-01]. http://www.mohurd.gov.cn/file/2021/20211012/dae27f9eb22debfd6d1e7965040b76ff.zip, 2021 [2] TONG Y, LIU J, LIU S. China is implementing “Garbage Classification” action[J]. Environmental Pollution, 2020, 259: 113707. doi: 10.1016/j.envpol.2019.113707 [3] ZHANG J, ZHANG Z, ZHANG J, et al. A Quantitative Study on the Benefit of Various Waste Classifications[J]. Advances in Civil Engineering, 2021: 2021. [4] LI Y, JIN Y, LI J, et al. Current situation and development of kitchen waste treatment in China[J]. Procedia Environmental Sciences, 2016, 31: 40-9. doi: 10.1016/j.proenv.2016.02.006 [5] PHAM T P T, KAUSHIK R, PARSHETTI G K, et al. Food waste-to-energy conversion technologies: Current status and future directions[J]. Waste Management, 2015, 38: 399-408. doi: 10.1016/j.wasman.2014.12.004 [6] FENG H, QU G-F, NING P, et al. The resource utilization of anaerobic fermentation residue[J]. Procedia Environmental Sciences, 2011, 11: 1092-9. doi: 10.1016/j.proenv.2011.12.165 [7] WEILAND P. Biogas production: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 849-60. doi: 10.1007/s00253-009-2246-7 [8] 毕峰, 李相儒, 韩泽东, 等. 我国农村易腐垃圾机器成肥产品质量评价——以杭州市为例[J]. 农业环境科学学报, 2018, 37(5): 7. [9] Commission E. Success stories on composting and separate collection[M]. Office for Official Publications of the European Communities, 2000. [10] CHRISTIANSEN K, HOFFMAN L, VIRTANEN Y, et al. Nordic guidelines on life-cycle assessment[M]. Nordic Council of Ministers, 1995. [11] FINNVEDEN R. The Application of Life Cycle Assessment to Integrated Solid Waste Management: Part 1—Methodology[J]. Process Safety and Environmental Protection, 2000. [12] ISO. Environmental management—life cycle assessment—principles and framework[J]. En Iso, 1997. [13] WHITE P R, FRANKE M, HINDLE P. Integrated Solid Waste Management: A Lifecycle Inventory: A Lifecycle Inventory[M]. Springer Science & Business Media, 1995. [14] WINKLER J, BILITEWSKI B. Comparative evaluation of life cycle assessment models for solid waste management[J]. Waste Management, 2007, 27(8): 1021-31. doi: 10.1016/j.wasman.2007.02.023 [15] CHERUBINI F, BARGIGLI S, ULGIATI S. Life cycle assessment (LCA) of waste management strategies: Landfilling, sorting plant and incineration[J]. Energy, 2009, 34(12): 2116-23. doi: 10.1016/j.energy.2008.08.023 [16] DENISON R A. Environmental life-cycle comparisons of recycling, landfilling, and incineration: A review of recent studies[J]. Annual Review of Energy and the Environment, 1996, 21(1): 191-237. doi: 10.1146/annurev.energy.21.1.191 [17] PAES M X, DE MEDEIROS G A, MANCINI S D, et al. Municipal solid waste management: Integrated analysis of environmental and economic indicators based on life cycle assessment[J]. Journal of Cleaner Production, 2020, 254: 119848. doi: 10.1016/j.jclepro.2019.119848 [18] SZARGUT J, MORRIS D R. Cumulative exergy consumption and cumulative degree of perfection of chemical processes[J]. International Journal of Energy Research, 1987, 11(2): 245-61. doi: 10.1002/er.4440110207 [19] SZARGUT J, MORRIS D R, STEWARD F R. Exergy analysis of thermal, chemical, and metallurgical processes[J]. 1987. [20] 李巧. 基于㶲理论的生物质分级气化制氢系统的综合性能评价[D]. 南京: 东南大学, 2019. [21] CORNELISSEN R. Thermodynamics and Sustainable Development[D]. Enschede, the Netherlands: University of Twente, 1997. [22] LOMBARDI L. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of a semi-closed gas turbine cycle with CO2 chemical absorption[J]. Energy Conversion and Management, 2001, 42(1): 101-14. doi: 10.1016/S0196-8904(00)00033-9 [23] TALENS PEIRÓ L, LOMBARDI L, VILLALBA MÉNDEZ G, et al. Life cycle assessment (LCA) and exergetic life cycle assessment (ELCA) of the production of biodiesel from used cooking oil (UCO)[J]. Energy, 2010, 35(2): 889-93. doi: 10.1016/j.energy.2009.07.013 [24] SEDPHO S, SAMPATTAGUL S, CHAIYAT N, et al. Conventional and exergetic life cycle assessment of organic rankine cycle implementation to municipal waste management: the case study of Mae Hong Son (Thailand)[J]. The International Journal of Life Cycle Assessment, 2016, 22(11): 1773-84. [25] TANG Y, DONG J, LI G, et al. Environmental and exergetic life cycle assessment of incineration- and gasification-based waste to energy systems in China[J]. Energy, 2020, 205: 118002. doi: 10.1016/j.energy.2020.118002 [26] AUTRET E, BERTHIER F, LUSZEZANEC A, et al. Incineration of municipal and assimilated wastes in France: Assessment of latest energy and material recovery performances[J]. Journal of Hazardous Materials, 2007, 139(3): 569-74. doi: 10.1016/j.jhazmat.2006.02.065 [27] 汪永祥, 王德彬. 采用煤低位发热量计算烟气量方法的探讨[J]. 吉林电力, 2008(5): 5. [28] 邵蕾, 周传斌, 曹爱新, 等. 家庭厨余垃圾处理技术研究进展[C]// 2011中国可持续发展论坛. 2011: 420-424. [29] 夏顺丽. 厨余垃圾综合处理工艺设计及其能量和物料平衡研究[D]. 山东: 山东大学, 2017. [30] Wang H, Xu J, Sheng L. Study on the comprehensive utilization of city kitchen waste as a resource in China[J]. Energy, 2019, 173: 263-277. doi: 10.1016/j.energy.2019.02.081 [31] 石建屏, 徐黎黎, 孙会宁, 等. 城市生活垃圾填埋气测算及资源化利用研究[J]. 再生资源与循环经济, 2016, 9(12): 32-35. doi: 10.3969/j.issn.1674-0912.2016.12.009 [32] ABYAR H, YOUNESI H, NOWROUZI M. Life cycle assessment of A2O bioreactor for meat processing wastewater treatment: An endeavor toward the achievement of environmental sustainable development[J]. Journal of Cleaner Production, 2020, 257: 120575. doi: 10.1016/j.jclepro.2020.120575 [33] CORNELISSEN R L, HIRS G G. The value of the exergetic life cycle assessment besides the LCA[J]. Energy Conversion and Management, 2002, 43(9-12): 1417-24. doi: 10.1016/S0196-8904(02)00025-0 [34] SUN B, NIE Z, GAO F. Cumulative exergy consumption (CExC) analysis of energy carriers in China[J]. International Journal of Exergy, 2014, 15(2): 196-213. doi: 10.1504/IJEX.2014.065646 [35] DEWULF J, VAN LANGENHOVE H, DIRCKX J. Exergy analysis in the assessment of the sustainability of waste gas treatment systems[J]. Science of the Total Environment, 2001, 273(1/2/3): 41-52. [36] 李海燕. 基于㶲理论的生物质热解制取高品位液体燃料综合性能评价[D]. 南京: 东南大学, 2015. [37] 侯博特, 李婉玲. 重金属离子与腐殖质的相互作用机理研究[J]. 农业与技术, 2014, 34(6): 5+48. [38] 刘义清, 胡飞. 生活垃圾焚烧废气的治理研究[J]. 广东化工, 2010, 037(12): 105-6. doi: 10.3969/j.issn.1007-1865.2010.12.051