-
溴系阻燃剂因其具有环境持久性、生物蓄积性和生物毒性等而被禁止使用[1]。与溴系阻燃剂相比,有机磷阻燃剂(organophosphorus flame retardants,OPFRs)具有较好的润滑、阻燃、增塑效果而被广泛应用,成为溴系阻燃剂的替代品[2]。有机磷阻燃剂作为一种人工合成的工业有机添加剂[3-4],广泛应用在各种商业及工业领域中,如电子设备,建筑材料,纺织品,油漆,家具等[5-7]。OPFRs主要以物理形式添加到材料中,在使用过程中通过挥发、磨损和溶解等方式进入环境[8],导致OPFRs广泛存在于水[9]、灰尘[10]、空气[11]和沉积物[12]等各种介质中。毒理学研究表明,多种OPFRs具有致畸、致癌、致突变风险以及神经毒性作用,即使暴露在低浓度下,长期积累也会对人体造成潜在危害[13]。现阶段,针对多种OPFRs的检测方法较少,因此,研究水体中OPFRs的污染特征并采用科学的方法对其进行检测和风险评价具有重要意义。
本研究筛选出环境中含量较高的27种OPFRs作为研究对象,通过优化固相萃取前处理条件、高效液相色谱-串联质谱仪和气相色谱-质谱联用仪的参数,建立了27种OPFRs的定性和定量分析方法,并对北京市潮白河流域地表水和地下水中OPFRs进行检测;同时,基于美国环境保护局(USEPA)推荐的健康风险评价模型对地表水和地下水中的OPFRs进行人体健康风险评价,旨在为地表水和地下水水体中OPFRs的检测及风险评价提供参考。
水体中27种有机磷阻燃剂(OPFRs)的检测及风险评价
Determination and risk assessment of 27 organophosphorus flame retardants (OPFRs) in water
-
摘要: 有机磷阻燃剂(organophosphorus flame retardants,OPFRs)具有致畸、致癌、致突变风险以及神经毒性作用。为了更好地研究其存在水平和健康风险,建立了固相萃取与高效液相色谱-串联质谱仪和气相色谱-质谱联用仪检测水体中27种OPFRs的分析方法,并对OPFRs进行了健康风险评价。20种OPFRs采用MCX固相萃取柱预处理和LC-MS/MS进行检测,以甲醇和含10 mmol·L−1的甲酸水溶液作为流动相进行梯度洗脱,7种OPFRs采用HLB串联Envi-18固相萃取柱进行预处理并利用GC-MS进行检测。检测结果表明,27种OPFRs的检出限为0.02~2.53 ng·L−1;定量限为0.06~8.43 ng·L−1;回收率为65.82%~108.48%。2021年4月份,采集北京市潮白河地表水和地下水8个水样并检测其OPFRs。实测结果表明:除磷酸三(2-异丙基苯)酯、磷酸异癸基二苯酯、磷酸叔丁基苯二苯酯、磷酸二苄酯外,其余23种OPFRs均有不同程度检出,质量浓度为0~973.17 ng·L−1;磷酸三(2-乙基己基)酯、磷酸三乙酯、磷酸三丙酯、磷酸三异丙酯含量相对较高,分别高达973.17、459.90、315.47、298.41 ng·L−1。采用USEPA模型对水样中的OPFRs进行了健康风险评价, 13种OPFRs的非致癌风险值为0~6.17×10−4,4种OPFRs致癌风险值为1.37×10−9~1.07×10−7;在高暴露条件下,OPFRs的非致癌风险值为1.61×10−5~6.17×10−4,致癌风险值为1.00×10−8~1.07×10−7,均低于风险阈值。上述结果说明,水体中OPFRs产生的健康风险处于较低水平。此次采集的潮白河地表水和地下水水中OPFRs的致癌风险和非致癌风险均处于较低水平。本研究结果可为地表水和地下水水体中OPFRs的检测及风险评价提供参考。
-
关键词:
- 有机磷阻燃剂(OPFRs) /
- 高效液相色谱-串联质谱仪 /
- 气相色谱-质谱联用仪 /
- 固相萃取 /
- 风险评价
Abstract: Organophosphorus flame retardants (OPFRs) have been demonstrated to be teratogenic, carcinogenic, mutagenic and neurotoxic. In order to better study its existing level and health risks, the analytical methods with solid-phase extraction (SPE) pretreatment followed by liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) were developed to determine 27 OPFRs in the surface and ground water, and their health risk assessment was performed. Twenty OPFRs were determined by MCX cartridge pretreatment coupled by LC-MS/MS method, and gradient elution was performed using methanol and 10 mmol·L−1 formic acid as the mobile phases in the positive mode. Seven OPFRs were determined by GC-MS method with HLB and Envi-18 double cartridge pretreatment. The results showed that the detection limit (LODs), quantitation limit (LOQs) and recoveries for the 27 OPFRs were 0.02~2.53 ng·L−1, 0.06~8.43 ng·L−1, and 65.82%~108.48%, respectively. In April 2021, eight samples from the surface and ground water in Chaobai River, Beijing were collected, and the concentrations of 27 OPFRs in these samples were analyzed. in which only 4 kinds of OPFRs, namely Tri-(2-isopropyl phenyl) phosphate(TIPPP), Isodecyl diphenyl phosphate(IDPP), Tertbutyl phenyl diphenyl phosphate(BPDP) and Dibenzyl phosphate(DBPP) were undetectable, the rest of 23 OPFRs was detected with the concentration range of 0~973.17 ng·L−1, and relative high concentrations for Tris (2-ethylhexyl) phosphate(TEHP), Tri-ethyl phosphate(TEP), Tri-propyl phosphate(TnPP), Tri-isopropyl phosphate(TiPP) were 973.17, 459.90, 315.47, 298.41 ng·L−1, respectively. The health risks posed by OPFRs in Chaobai River water environment were evaluated using the USEPA health risk assessment model. The non-carcinogenic risk values of 13 OPFRs were in the range of 0~6.17×10−4, whereas the carcinogenic risk values of 4 OPFRs were in the range of 1.37×10−9~1.07×10−7. At the high exposure concentrations, the non-carcinogenic risk values of the above 13 OPFRs were in the range of 1.61×10−5~6.17×10−4, the carcinogenic risk values of 4 OPFRs were in the range of 1.00×10−8~1.07×10−7, they were below the low risk threshold, indicating that the health risk caused by OPFRs in Chaobai River surface and ground water was at a low level. The carcinogenic risk and non-carcinogenic risk of OPFRs in Chaobai River surface water and groundwater collected are at a low level. This study can provide a reference for the detection and risk assessment of OPFRs in surface water and groundwater. -
表 1 20种OPFRs的LC-MS/MS参数
Table 1. LC-MS/MS parameters of 20 OPFRs
化合物 出峰时间/
min母离子质
荷比定量离子质荷比 四极杆
电压1 (Q1)/V碰撞室电压(CE)/V 四极杆电压2 (Q3)/V 第1次 第2次 第3次 第1次 第2次 第3次 第1次 第2次 第3次 TEP 2.143 183.10 98.90 126.90 154.90 −20 −20 −14 −12 −19 −23 −30 TCEP 2.164 285.00 63.00 98.90 222.80 −19 −27 −23 −13 −26 −19 −25 TPPO 2.775 278.90 200.95 76.95 173.00 −19 −26 −48 −33 −23 −27 −12 TCPP 2.928 327.00 99.00 174.85 250.90 −15 −21 −13 −9 −18 −19 −28 TiPP 3.089 225.20 98.95 140.95 80.90 −17 −16 −10 −48 −19 −16 −30 TnPP 3.095 225.20 98.95 141.00 192.95 −16 −17 −10 −7 −18 −26 −13 IDDP 3.594 293.10 251.00 76.95 153.05 −14 −11 −41 −25 −26 −29 −29 TDCPP 3.778 430.90 98.90 208.90 210.85 −20 −29 −18 −17 −19 −23 −22 TPhP 4.198 327.10 77.00 151.90 214.90 −11 −45 −39 −28 −14 −28 −23 TiBP 4.593 267.20 98.95 155.00 80.85 −20 −15 −9 −55 −20 −11 −30 TnBP 4.594 267.20 98.95 154.95 211.10 −20 −21 −11 −9 −19 −30 −24 MDPP 4.833 341.10 152.00 165.00 90.90 −12 −34 −33 −36 −30 −30 −17 TBEP 4.954 399.30 199.00 299.15 45.00 −27 −16 −14 −25 −14 −22 −17 TPeP 6.683 309.30 99.00 169.00 239.00 −11 −20 −11 −9 −19 −12 −27 EHDPP 6.689 363.20 251.05 76.90 151.90 −18 −10 −49 −45 −18 −14 −26 IDPP 7.787 391.30 251.00 76.95 148.90 −14 −14 −45 −24 −28 −30 −30 TXP 8.240 411.20 104.95 179.05 194.00 −14 −34 −42 −31 −18 −19 −20 TDMPP 8.255 411.20 178.95 194.00 79.05 −28 −47 −30 −50 −18 −22 −14 TIPPP 8.414 453.30 327.00 411.10 369.10 −16 −30 −18 −22 −23 −21 −27 THP 8.540 351.30 99.10 182.95 267.15 −12 −20 −12 −10 −19 −21 −30 表 2 7种OPFRs的 GC-MS参数
Table 2. GC-MS parameters of 7 kinds of OPFRs
化合物 出峰时间/min 基峰 定性峰1 定性峰2 BEHP 43.559 99 113 55 TEHP 43.566 99 113 57 BPDP 47.459 367 368 382 DBPP 48.373 91 92 277 o-TTP 45.352 165 368 179 m-TTP 46.273 368 367 165 p-TTP 47.577 368 367 107 表 3 27种PPCPs的参数对比
Table 3. Parameter comparison of 27 PPCPs
化合物 可决系数R2 回收率/% 相对标准偏差RSD/% 检出限/(ng·L−1) 定量限/(ng·L−1) 检测方法 TDMPP 0.991 75.99 5.6 0.19 0.64 LC-MS/MS TCEP 0.996 81.37 3.5 0.28 0.93 LC-MS/MS TiBP 0.999 98.35 6.3 0.37 1.23 LC-MS/MS TnPP 0.992 94.68 5.7 0.05 0.18 LC-MS/MS TiPP 0.994 98.25 4.6 0.03 0.11 LC-MS/MS MDPP 0.996 66.30 3.6 0.31 1.04 LC-MS/MS IDPP 0.996 74.88 3.1 0.37 1.24 LC-MS/MS TIPPP 0.999 97.57 7.8 0.31 1.02 LC-MS/MS TPeP 0.999 90.51 6.5 0.04 0.14 LC-MS/MS EHDPP 0.998 95.03 9.3 0.07 0.23 LC-MS/MS TEP 0.999 76.20 5.1 0.1 0.32 LC-MS/MS TCPP 0.998 65.82 2.4 0.03 0.11 LC-MS/MS TBEP 0.999 74.48 10.6 0.05 0.16 LC-MS/MS TnBP 0.999 102.14 8.3 0.02 0.06 LC-MS/MS THP 0.994 81.16 9.4 0.13 0.44 LC-MS/MS TPhP 0.996 80.91 8.0 0.13 0.42 LC-MS/MS TPPO 0.998 94.59 10.1 0.02 0.08 LC-MS/MS IDDP 0.994 75.96 8.3 0.08 0.25 LC-MS/MS TDCPP 0.999 70.54 6.3 0.29 0.96 LC-MS/MS TXP 0.996 77.14 5.1 0.10 0.32 LC-MS/MS BEHP 0.993 95.36 4.2 0.55 1.83 GC-MS TEHP 0.999 101.36 4.2 0.49 1.62 GC-MS BPDP 0.999 103.35 6.4 2.53 8.43 GC-MS DBPP 0.994 86.38 5.2 0.74 2.45 GC-MS o-TTP 0.999 95.80 6.3 0.39 1.31 GC-MS m-TTP 0.999 92.76 8.2 0.59 1.96 GC-MS p-TTP 0.997 108.48 6.1 0.68 2.28 GC-MS 表 4 23种OPFRs在8个采样点中的质量浓度
Table 4. Mass concentrations of 23 kinds of OPFRs in 8 sampling points
化合物 地表水/(ng·L−1) 地下水/(ng·L−1) S1 S2 S3 S4 1# 2# 3# 4# TDMPP 1.83 1.98 0 6.56 72.23 105.33 46.54 61.75 TCEP 40.05 37.07 4.37 7.06 29.31 8.03 11.41 25.88 TiBP 16.23 15.99 12.19 8.15 13.25 32.58 27.64 34.35 TnPP 315.47 192.76 46.46 44.67 29.30 208.83 191.06 201.69 TiPP 298.41 189.09 64.68 46.72 10.34 116.51 105.91 102.14 MDPP 0.57 0.48 0.52 1.25 2.24 2.39 0 12.22 TPeP 0.43 0 0 0 0 0.46 0 2.03 EHDPP 1.44 1.03 1.05 0.88 0.88 8.96 2.88 6.15 TEP 136.53 133.21 17.38 459.90 7.48 80.94 113.56 71.21 TCPP 61.23 45.63 9.54 26.56 17.75 65.76 21.81 83.39 m-TTP 2.31 2.67 2.49 6.41 11.63 9.97 1.60 87.27 o-TTP 0.49 0.68 1.01 1.20 2.28 4.75 8.93 15.39 TBEP 27.01 5.74 1.21 0.62 1.33 8.01 2.52 7.35 TnBP 51.34 41.09 14.49 31.80 64.99 116.36 57.86 86.04 THP 1.11 0.66 1.01 0.92 0.67 0.76 0 1.60 TPhP 2.32 0 3.27 2.78 3.06 4.93 3.36 9.11 TPPO 70.60 53.56 55.84 12.26 37.41 30.29 27.60 53.75 p-TTP 0.84 0.96 0.72 2.94 1.74 3.38 0 23.86 IDDP 2.98 0.64 0.89 2.83 0.97 1.13 2.88 5.63 TDCPP 8.06 9.88 1.50 2.36 2.47 4.83 5.80 10.96 TXP 1.24 1.86 0.49 5.34 82.13 116.10 38.16 64.94 BEHP 0.31 0.27 0.24 0.51 3.85 9.93 0.81 1.36 TEHP 30.46 26.95 23.04 50.38 376.85 973.17 79.27 133.17 ƩOPFRs 1 071.26 762.2 262.39 722.1 772.16 1 913.4 749.6 1 101.24 表 5 OPFRs 暴露风险计算参数
Table 5. Parameters for the exposure risk calculation to OPFRs
性别 儿童或成人 饮水量/(L·d-1) 人体质量/kg 男性 儿童 0.81 24 成人 2.23 65 女性 儿童 0.76 23 成人 1.65 56 表 6 OPFRs的参考剂量值和斜率致癌因子参数值
Table 6. Chronic oral reference dose and oral slope factor values of OPFRs
化合物 参考剂量值/(ng·(kg·d)−1) 致癌斜率因子/(ng·(kg·d)−1) TEP 125 000 — TnBP 10 000 9.00×10−9 TDCPP 20 000 3.10×10−8 TPHP 7 000 — EHDPP 15 000 — o-TTP 20 000 — m-TTP 20 000 — p-TTP 20 000 — TCEP 7 000 2.00×10−8 TCPP 10 000 — TBEP 15 000 — TPPO 20 000 — TEHP 100 000 3.10×10−9 -
[1] LI S H, ZHU F F, ZHANG D R, et al. Seasonal concentration variation and potential influencing factors of organophosphorus flame retardants in a wastewater treatment plant[J]. Environmental Research, 2021, 199: 111318. doi: 10.1016/j.envres.2021.111318 [2] LIU Y H, SONG N H, GUO R X, et al. Occurrence and partitioning behavior of organophosphate esters in surface water and sediment of a shallow Chinese freshwater lake (Taihu Lake): Implication for eco-toxicity risk[J]. Chemosphere, 2018, 202: 255-263. doi: 10.1016/j.chemosphere.2018.03.108 [3] LEE S, JEONG W, KANNAN K, et al. Occurrence and exposure assessment of organophosphate flame retardants (OPFRs) through the consumption of drinking water in Korea[J]. Water Research, 2016, 103: 182-188. doi: 10.1016/j.watres.2016.07.034 [4] 杨露敏, 宋晓翠, 张颖, 等. 自来水给水系统中有机磷酸酯的污染特征及健康风险评价[J]. 环境科学学报, 2021, 41(8): 3268-3278. [5] CHEN Y X, LIU Q Y, MA J, et al. A review on organophosphate flame retardants in indoor dust from China: Implications for human exposure[J]. Chemosphere, 2020, 260: 127633. doi: 10.1016/j.chemosphere.2020.127633 [6] XING L Q, ZHANG Q, SUN X, et al. Occurrence, distribution and risk assessment of organophosphate esters in surface water and sediment from a shallow freshwater Lake, China[J]. Science of the Total Environment, 2018, 636: 632-640. doi: 10.1016/j.scitotenv.2018.04.320 [7] LI W H, WANG Y, ALEXANDROS G A, et al. Organophosphate esters in indoor dust from 12 countries: Concentrations, composition profiles, and human exposure[J]. Environment International, 2019, 133: 105178. doi: 10.1016/j.envint.2019.105178 [8] ZHONG M Y, TANG J H, MI L J, et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai and Yellow Seas, China[J]. Marine Pollution Bulletin, 2017, 121: 331-338. doi: 10.1016/j.marpolbul.2017.06.034 [9] LI J, YU N Y, ZHANG B B, et al. Occurrence of organophosphate flame retardants in drinking water from China[J]. Water Research, 2014, 54: 53-61. doi: 10.1016/j.watres.2014.01.031 [10] NADEEM A, ALIN C D, NELE V D E, et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: Indoor sources and human exposure assessment[J]. Chemosphere, 2012, 88(11): 1276-1282. doi: 10.1016/j.chemosphere.2012.03.100 [11] HAN X, HAO Y F, LI Y M, et al. Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic[J]. Environmental Pollution, 2020, 263: 114495. doi: 10.1016/j.envpol.2020.114495 [12] TAN X X, LUO X J, ZHENG X B, et al. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China[J]. Science of the Total Environment, 2016, 544: 77-84. doi: 10.1016/j.scitotenv.2015.11.089 [13] CHEN M H, MA W L. A review on the occurrence of organophosphate flame retardants in the aquatic environment in China and implications for risk assessment[J]. Science of the Total Environment, 2021, 783: 147064. doi: 10.1016/j.scitotenv.2021.147064 [14] United States Environment Protection Agency. Atlantic Risk Assessment, Regional Screening Levels (RSLs)-Generic Tables[M/OL]. (2017-01-19)[2022-01-20]. Washington, 2017. https://www.epa.gov/region9/superfund/prg. [15] LI J F, HE J H, LI Y N, et al. Assessing the threats of organophosphate esters (flame retardants and plasticizers) to drinking water safety based on USEPA oral reference dose (RfD) and oral cancer slope factor (SFO)[J]. Water Research, 2019, 154: 84-93. doi: 10.1016/j.watres.2019.01.035 [16] DING J J, SHEN X L, LIU W P, et al. Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China[J]. Science of the Total Environment, 2015, 538: 959-965. doi: 10.1016/j.scitotenv.2015.08.101 [17] 赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷): 概要[M]. 北京: 中国环境科学出版社, 2014. [18] SHI W, ZHANG F X, ZHANG X W, et al. Identification of trace organic pollutants in freshwater sources in Eastern China and estimation of their associated human health risks[J]. Ecotoxicology, 2011, 20(5): 1099-1106. doi: 10.1007/s10646-011-0671-8 [19] 董政, 马玉龙, 李珺琪, 等. 潍坊滨海经济技术开发区饮用水中有机磷酸酯的水平及人体暴露风险评估[J]. 环境科学, 2017, 38(10): 4212-4219. [20] LI J F, ZHANG Z Z, MA L Y, et al. Implementation of USEPA RfD and SFO for improved risk assessment of organophosphate esters (organophosphate flame retardants and plasticizers)[J]. Environment International, 2018, 114: 21-26. doi: 10.1016/j.envint.2018.02.027 [21] 高立红. 北京市城市环境有机磷酸酯污染水平和分布特征研究[D]. 北京: 北京科技大学, 2016. [22] 陈玫宏, 徐怀洲, 宋宁慧, 等. 高效液相色谱-串联质谱法同时测定水体和沉积物中12种有机磷酸酯类化合物[J]. 分析化学, 2017, 45(7): 987-995. doi: 10.11895/j.issn.0253-3820.170180 [23] SHI Y L, GAO L H, LI W H, et al. Occurrence, distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing. China[J]. Environmental Pollution, 2016, 209: 1-10. doi: 10.1016/j.envpol.2015.11.008 [24] 李栋, 张圣虎, 张芹, 等. 长江南京段水源水中有机磷酸酯的污染特征与风险评估[J]. 环境科学, 2020, 41(1): 205-212. [25] 王艺璇, 张芹, 宋宁慧, 等. 南京市雪水中有机磷阻燃剂的污染特征及健康风险评价[J]. 中国环境科学, 2019, 39(12): 5101-5109. [26] STEPIEN D K, REGNERY J, MERZ C, et al. Behavior of organophosphates and hydrophilic ethers during bank filtration and their potential application as organic tracers: A field study from the Oderbruch, Germany[J]. Science of the Total Environment, 2013, 458-460: 150-159. doi: 10.1016/j.scitotenv.2013.04.020 [27] CAO Z G, XU F C, COVACI A, et al. Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure[J]. Environmental Science & Technology, 2014, 48(15): 8839-8846. [28] REEMTSMA T, JOSE B Q, RODIL R, et al. Organophosphorus flame retardants and plasticizers in water and air I. Occurrence and fate[J]. Trends in Analytical Chemistry, 2008, 27(9): 727-737. [29] 朱舟, 顾炜旻, 安伟, 等. 基于umu遗传毒性效应的饮用水致癌风险评价的尝试[J]. 生态毒理学报, 2008, 3(4): 363-369. doi: 10.1016/j.trac.2008.07.002