-
将传统生物转化方式向着节能途径转变,对现行工艺进行升级改造,是污水处理行业追求减污降碳协同增效的有效途径。在污水生物脱氮除磷方面,反硝化除磷与传统生物脱氮除磷相比,可节省有机碳源、氧气消耗并减少污泥产量。以亚硝酸盐为电子受体的反硝化除磷相比硝酸盐作为电子受体,可进一步减少碳源和能耗需求,是低碳的污水处理工艺[1-3]。然而,由于对碳源的竞争和污泥龄不同,难以为各类细菌提供最佳生长环境,因碳源不足导致的低效生物除磷,需要化学除磷的辅助[4-5]。研究表明,通过合理调节参数反硝化除磷功能得以强化,如提高好氧区水力停留时间、适宜流量比的旁路进水策略、调控好氧/缺氧时长联合分区排泥、优化曝气和回流方式等[6-10]。A2N工艺(厌氧、缺氧和硝化)是专门为反硝化除磷设计的一种工艺,其中硝化生物膜和反硝化除磷悬浮污泥在2个污泥系统中进行,从而避免了不同菌种间的竞争[11]。然而A2N-SBR系统的反应器结构复杂,致使其工程推广难度较大[12]。此外,Dephanox、A2/O-BAF、A2/O-BCO双污泥工艺较单污泥工艺在实现反硝化除磷方面更具优势[13-15]。
生物强化可通过侧流反应器中富集硝化细菌回流至主流以提高主流中硝化细菌的比例,从而提高污水处理系统的硝化效能[16]。为强化反硝化除磷效能,可扩大活性污泥中反硝化除磷优势菌属的比例[17]。基于反硝化除磷菌(denitrifying phosphate accumulating organisms, DPAOs)的生理特性,现有研究集中于采用序批式反应器(sequencing batch reactor,SBR)通过厌氧-缺氧或厌氧-缺氧-好氧条件来富集DPAOs[18-19],并发现亚硝酸盐或游离亚硝酸(free nitrous acid,FNA)不同阈值可能导致对DPAOs产生抑制[18,20-21]。然而,DPAOs亦可抵抗亚硝酸盐或FNA阈值在污泥培养过程中的逐渐提高[18,22-23]。DPAOs属于聚磷菌(phosphate accumulating organisms,PAOs)的分支之一,亦有研究证明某些类型的反硝化细菌具有除磷功能[24-28]。
本研究中通过底物反应速率调节底物的流加速率,以期在SBR反应器中富集培养以亚硝酸盐和硝酸盐作为电子受体的反硝化菌群,并将其添加至单污泥A2/O工艺中,以刺激反硝化细菌发挥生物除磷功能,进而加速反应器启动。本研究旨在为基于传统活性污泥工艺进行低碳工艺改造,以处理低COD/N生活污水提供参考。
添加反硝化菌群的A2/O反硝化除磷低碳工艺启动
Start-up of low-carbon denitrifying phosphorus removal in an A2/O process after augmentation of denitrifying bacterial community
-
摘要: 为探究反硝化除磷低碳工艺的实际效果,采用序批式反应器(SBR)根据底物反应速率来调节底物的流加速率,并以温度(20±2) °C、pH(7.5±0.2)和溶解氧(DO)为0的反应条件富集反硝化菌群。得到可同时利用亚硝酸盐和硝酸盐为电子受体的反硝化菌群,将其添加至厌氧-缺氧-好氧(A2/O)工艺中,以刺激反硝化细菌在反应器中发挥生物除磷功能,并开展工艺启动研究。结果表明:在加入反硝化菌群后,A2/O工艺发生了明显的反硝化除磷反应,且系统运行稳定;反硝化除磷途径的TP去除负荷均值约为0.014 8 kg·(m3·d)−1;厌氧出水TP平均值为11.95 mg·L−1,且缺氧吸磷量与好氧吸磷量的平均比率约为2.40,即平均反硝化除磷率高达73.34%。这表明在单污泥A2/O工艺中成功实现了反硝化除磷的启动,从而证明了反硝化菌群的生物强化作用,其中的反硝化除磷功能菌群的相对优势菌属包括Dechloromonas、Rhodobacter、Thermomonas等。本研究可为探索基于传统活性污泥系统的低碳生物脱氮除磷工艺,并更好地利用反硝化除磷菌(DPAOs)提供了案例参考。Abstract: In order to explore the practical effect of low-carbon denitrification phosphorus removal process, the start-up study of the process was carried out in sequencing batch reactor (SBR). The substrate flow acceleration rate was adjusted according to the substrate reaction rate under a condition of a temperature of (20±2) °C, a pH of (7.5±0.2), and a dissolved oxygen (DO) content of 0. Denitrifying bacterial community that could use both nitrite and nitrate as electron acceptors was enriched and added into an anaerobic-anoxic-oxic (A2/O) process to stimulate the denitrifying bacteria to play the biological phosphorus removal function in the reactor. The results revealed that after adding denitrifying bacterial this A2/O process had obvious denitrification and phosphorus removal reaction, and the system ran stably. The average load of TP removal by denitrifying phosphorus removal was around 0.0148 kg·(m3·d)−1. The average concentration in the anaerobic effluent reached 11.95 mg·L−1, and the average ratio of anoxic phosphorus uptake amount to aerobic phosphorus uptake amount reached 2.40, that is the average denitrifying phosphorus removal rate was as high as 73.34%. This indicated that the start-up of denitrifying phosphorus removal was achieved in this single-sludge A2/O process, thus demonstrating the biological strengthening effect of denitrifying bacterial, and the comparative advantages of denitrifying phosphorus removal bacteria including Dechloromonas , Rhodobacter , Thermomonas , etc. This work proposed an available choice to take better advantage of DPAOs in a traditional activated sludge system to accomplish low-carbon biological nitrogen and phosphorus removal.
-
-
[1] JI Z Y, CHEN Y G. Using sludge fermentation liquid to improve wastewater short-cut nitrification-denitrification and denitrifying phosphorus removal via nitrite[J]. Environmental Science & Technology, 2010, 44(23): 8957-8963. [2] GUO J H, Ni B J, Han X Y, et al. Unraveling microbial structure and diversity of activated sludge in a full-scale simultaneous nitrogen and phosphorus removal plant using metagenomic sequencing[J]. Enzyme and Microbial Technology, 2017, 102: 16-25. doi: 10.1016/j.enzmictec.2017.03.009 [3] 缪新年, 程诚, 朱琳, 等. 短程硝化和反硝化除磷耦合工艺研究进展[J]. 水处理技术, 2020, 46(12): 12-16. [4] VALVE M, RANTANEN P, KALLIO J. Enhancing biological phosphorus removal from municipal wastewater with partial simultaneous precipitation[J]. Water Science and Technology, 2002, 46(4-5): 249-255. doi: 10.2166/wst.2002.0598 [5] OEHMEN A, LEMOS P C, CARVALHO G, et al. Advances in enhanced biological phosphorus removal: from micro to macro scale[J]. Water Research, 2007, 41(11): 2271-2300. doi: 10.1016/j.watres.2007.02.030 [6] ZENG W, LI L, YANG Y Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulation on phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domestic wastewater[J]. Enzyme and Microbial Technology, 2011, 48(2): 134-142. doi: 10.1016/j.enzmictec.2010.10.010 [7] MA Y, PENG Y Z, WANG X L. Improving nutrient removal of the AAO process by an influent bypass flow by denitrifying phosphorus removal[J]. Desalination, 2009, 246(1-3): 534-544. doi: 10.1016/j.desal.2008.04.061 [8] 王文琪, 李冬, 高鑫, 等. 不同好氧/缺氧时长联合分区排泥优化生活污水短程硝化反硝化除磷颗粒系统运行[J]. 环境科学, 2021, 42(9): 4406-4413. [9] 王启镔, 李浩, 董旭, 等. 改良型A2/O污水处理厂的工艺优化调控方案及其对同步脱氮除磷效率的提升[J]. 环境工程学报, 2022, 16(2): 659-665. [10] 吕亮, 尤雯, 张敏, 等. 硝化液回流比对ABR-MBR工艺反硝化除磷效能的影响[J]. 环境科学, 2018, 39(3): 1309-1315. [11] KUBA, T, VAN LOOSDRECHT, M. C. M, HEIJNEN, J. J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996, 30(7): 1702-1710. doi: 10.1016/0043-1354(96)00050-4 [12] DAI H L, CHEN W L, DAI Z Q, et al. Efficient model calibration method based on phase experiments for anaerobic-anoxic/nitrifying (A2N) two-sludge process[J]. Environmental Science and Pollution Research, 2017, 24(23): 19211-19222. doi: 10.1007/s11356-017-9437-z [13] 卞晓峥, 闫阁, 黄健平, 等. 双污泥系统反硝化除磷新工艺研究进展[J]. 水处理技术, 2021, 47(7): 19-24. [14] 张淼, 彭永臻, 张建华, 等. 进水C/N对A2/O-BCO工艺反硝化除磷特性的影响[J]. 中国环境科学, 2016, 36(5): 1366-1375. [15] CHEN P, Wu JUNKANG, Lu X. Denitrifying phosphorus removal and microbial community characteristics of two-sludge DEPHANOX system: Effects of COD/TP ratio[J]. Biochemical Engineering Journal, 2021, 172: 108059. doi: 10.1016/j.bej.2021.108059 [16] SALEM S, BERENDS D H J G, HEIJNEN J J, et al. Bio-augmentation by nitrification with return sludge[J]. Water Research, 2003, 37(8): 1794-1804. doi: 10.1016/S0043-1354(02)00550-X [17] 王启镔, 苑泉, 宫徽, 等. SBR系统在低浓度污水条件下培养好氧颗粒污泥的特性及微生物分析[J]. 环境工程学报, 2018, 12(11): 3043-3052. [18] HU J Y, ONG S L, NG W J, et al. A new method for characterizing denitrifying phosphorus removal bacteria by using three different types of electron acceptors[J]. Water Research, 2003, 37(14): 3463-3471. doi: 10.1016/S0043-1354(03)00205-7 [19] PODEDWORNA J, ŻUBROWSKA-SUDOŁ M. Nitrogen and phosphorus removal in a denitrifying phosphorus removal process in a sequencing batch reactor with a forced anoxic phase[J]. Environmental Technology, 2012, 33(2): 237-245. doi: 10.1080/09593330.2011.563428 [20] ZHOU Y, PIJUAN M, YUAN Z G. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by poly-phosphate accumulating organisms[J]. Biotechnology and Bioengineering, 2007, 98(4): 903-912. doi: 10.1002/bit.21458 [21] PENG Y Z, WU C Y, WANG R D, et al. Denitrifying phosphorus removal with nitrite by a real-time step feed sequencing batch reactor[J]. Journal of Chemical Technology and Biotechnology, 2011, 86(4): 541-546. doi: 10.1002/jctb.2548 [22] 韦佳敏, 沈耀良, 黄慧敏, 等. 基质浓度对ABR-MBR短程反硝化除磷工艺效能的影响[J]. 环境工程学报, 2021, 15(3): 939-945. [23] WANG Y Y, GUO Gang, WANG Hong. Long-term impact of anaerobic reaction time on the performance and granular characteristics of granular denitrifying biological phosphorus removal systems[J]. Water Research, 2013, 47: 5326-5337. doi: 10.1016/j.watres.2013.06.013 [24] KIM J M, LEE H J, LEE D S, et al. Characterization of the denitrification-associated phosphorus uptake properties of "Candidatus Accumulibacter phosphatis" clades in sludge subjected to enhanced biological phosphorus[J]. Applied and Environmental Microbiology, 2013, 79(6): 1969-1979. doi: 10.1128/AEM.03464-12 [25] HAN Y H, ZHAN W X, LU W X, et al. Co-immobilization of Pseudomonas stutzeri YHA-13 and Alcaligenes sp. ZGED-12 with polyvinyl alcohol–alginate for removal of nitrogen and phosphorus from synthetic wastewater[J]. Environmental Technology, 2014, 35(22): 2813-2820. doi: 10.1080/09593330.2014.923516 [26] ZHAO W H, BI X J, PENG Y Z, et al. Research advances of the phosphorus-accumulating organisms of Candidatus Accumulibacter, Dechloromonas and Tetrasphaera: Metabolic mechanisms, applications and influencing factors[J]. Chemosphere, 2022, 307: 135675. doi: 10.1016/j.chemosphere.2022.135675 [27] 连丽丽. 聚磷菌的筛选及其对污水的除磷特性研究[D]. 辽宁: 辽宁师范大学, 2009. [28] 温馨. 低氨氮废水SNAD-DPR协同处理技术与微生物作用机制研究[D]. 重庆: 重庆大学, 2018. [29] YAO R D, YUAN Q, WANG K J. Enrichment of denitrifying bacterial community using nitrite as an electron acceptor for nitrogen removal from wastewater[J]. Water, 2020, 12(1): 48. [30] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [31] RONG Y, LIU X C, WEN L J, et al. Advanced nutrient removal in a continuous A2/O process based on partial nitrifification-anammox and denitrifying phosphorus removal[J]. Journal of Water Process Engineering, 2020, 36: 101245. doi: 10.1016/j.jwpe.2020.101245 [32] CARVALHO G, LEMOS P C, OEHMEN A, et al. Denitrifying phosphorus removal: Linking the process performance with the microbial community structure[J]. Water Research, 2007, 41(19): 4383-4396. doi: 10.1016/j.watres.2007.06.065 [33] 马小茜, 张哲, 刘超, 等. 生活垃圾焚烧厂渗沥液厌氧氨氧化脱氮效能及微生物机理分析[J]. 环境工程, 2021, 39(11): 110-118. [34] YU W J, LAWRENCE N C, SOOKSA-NGUAN T, et al. Microbial linkages to soil biogeochemical processes in a poorly drained agricultural ecosystem[J]. Soil Biology and Biochemistry, 2021, 156: 108228. doi: 10.1016/j.soilbio.2021.108228 [35] 周石磊, 黄廷林, 白士远, 等. 贫营养好氧反硝化菌的分离鉴定及其脱氮特性[J]. 中国环境科学. 2016, 36(1): 238-248. [36] YANG Z C, ZHOU Q, SUN H M, et al. Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of wastewater treatment plant effluent: A pilot-scale study[J]. Water Research, 2021, 196: 117067. doi: 10.1016/j.watres.2021.117067 [37] LIU Y, TAY J H. State of the art of biogranulation technology for wastewater treatment[J]. Biotechnology Advances, 2004, 22(7): 533-563. doi: 10.1016/j.biotechadv.2004.05.001 [38] QIN L, TAY J H, LIU Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors[J]. Process Biochemistry, 2004, 39(5): 579-584. doi: 10.1016/S0032-9592(03)00125-0 [39] LETTINGA G, VELSEN A F M, HOBMA S W, et al. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment[J]. Biotechnology and Bioengineering, 1980, 22(4): 699-734. doi: 10.1002/bit.260220402 [40] 吴越, 赵传峰, 孙法文, 等. 双区沉淀池用于连续流好氧颗粒污泥工艺的可行性[J]. 中国给水排水, 2020, 36(19): 9-15. [41] 姚仁达. 氨氧化和硝化细菌菌群筛选与富集培养及其固定化研究[D]. 北京: 北京工业大学, 2017.