-
黄河流域的生态保护和高质量发展已经上升为国家战略。《黄河流域生态保护和高质量发展规划纲要》[1]中提出要统筹推进黄河流域城乡生活污染治理,做好厕所革命与农村生活污水治理的衔接,因地制宜选择治理模式,强化污水管控标准。山西省晋城市是黄河流域的重要城市,其境内有黄河的2条重要支流——丹河和沁河。丹河和沁河流域沿岸分布大量的村庄,这些村庄污水收集处理率低。丹沁两河多处考察断面水质不合格,部分断面氮、磷污染物严重超标,水质持续为劣五类。因此,需将丹沁两河流域内的村庄,特别是一些人口数量较多、污水直接入河的村庄的生活污水进行收集处理。这对提高丹沁两河水质,降低黄河流域水环境污染及改善当地农村人居环境都具有重要意义。
目前,农村生活污水处理技术正逐渐从传统生化处理技术向因地制宜的生态、自然型处理技术转变。生态滤池因其自然生态性强、剩余污泥量少、抗冲击负荷能力强、基建费用低、运行管理方便等优点,在国内外农村地区应用越来越多[2-6]。陈美登等[4]采用生态滤池技术处理贵州省环保科技园化粪池污水,出水水质能稳定达到贵州省地方一级标准。潘伟亮等[5]采用生态滤池技术处理重庆市铜梁区某农村污水,取得了较好的净化效果。生态滤池种植有根系发达的水生植物,随着植物根系的生长发育,逐渐在填料上层形成一层致密的水生植物根系过滤层,不仅可以增强系统的过滤性能,还可以为微生物提供更大的附着面积,提高微生物的多样性和活性[7-8],从而提高污水净化能力。同时,植物吸收作用可增强系统对污染物的去除能力,尤其是对氮、磷的去除能力[9-11]。处理效果和运行费用是生态滤池使用中普遍关注的2个问题,无动力生态滤池运行费用低,但存在供氧不足,氮污染物去除效果差的问题,因此,多见于处理微污染水体[12-13]和农村生活灰水[14-15],或与其他技术联合使用[16]。谢春生等[17]采用微动力的生态水培槽与无动力的生态滤池组合工艺处理农村生活污水,其对NH4+-N的去除率高达93%。而处理相对浓度较高的灰、黑水混合农村生活污水,单独采用无动力的生态滤池是很难实现达标排放的,在生态滤池内部添加曝气后可以极大提高对污染物的去除效果[18-19]。但曝气又会增加系统的能耗,从而增加运行成本,这一矛盾在发展较差的农村显得尤为突出[20]。庞文等[21]通过调研发现北京周边农村污水处理设施停运现象普遍存在,其中一大原因就是资金匮乏。因此,探寻生态滤池高效节能的曝气条件,对生态滤池的推广以及持久应用意义重大。本文考察了不同曝气条件对生态滤池去除污染物的影响,优化了保持较好污染物去除效果和较低能耗的曝气条件,以期为生态滤池在晋城市农村生活污水治理实际应用中提供参考。
曝气条件对生态滤池处理农村生活污水的影响
Effects of aeration conditions on the treatment of rural domestic sewage by ecological filter
-
摘要: 生态滤池技术在农村生活污水治理中应用越来越多,针对生态滤池技术存在持续曝气能耗较高,增大了处理成本的问题。采用生态滤池处理晋城市农村生活污水,研究了不同曝气条件对生态滤池净化效果的影响。结果表明,间歇曝气的生态滤池比无曝气的生态滤池生物作用更强,植物生长更茂盛,微生物群落的丰富度和多样性更高,污染物的去除效果更好。当间歇曝气采用2∶3、3∶3、4∶2的曝停比时,随着曝停比的增大,NH4+-N、TP、DTP、SRP的去除率增加,但TN、COD的去除率降低。采用相同的曝停比时,植物茂盛时生态滤池的净化效果更好。间歇曝气的生态滤池运行中,水生植物稀疏时采用3∶3的曝停比,植物茂盛后采用2∶3的曝停比,可获得较好的处理效果,并能耗较低。间歇曝气的生态滤池设计简单、自然生态性强、运行费用低,出水TN、COD能稳定达到山西省《农村生活污水处理设施水污染物排放标准》(DB 14/726-2019)的一级排放标准,NH4+-N、TP也具有较高的一级达标率。该研究为生态滤池在晋城市农村地区的应用提供了参考。Abstract: More and more applications of the ecological filter have been emerged in the treatment of rural domestic sewage, but high energy consumption of continuous aeration and increased treatment cost are main problems in its application. In this study, the ecological filter was used to treat rural domestic sewage in Jincheng City and the influence of different aeration conditions on its purification effect was investigated. The results showed that comparing to the non-aerated ecological filter, the biological effect of the intermittent aerated ecological filter was stronger, plants grew more luxuriantly, microbial community was richer and more diverse, pollutant removal effect was better. When intermittent aeration adopted the ratios of aeration and stop time of 2∶3, 3∶3 and 4∶2, with the increased of the ratio, the removal rates of NH4+-N, TP, DTP and SRP also increased, while the removal rates of TN and COD decreased. At the same ratio of aeration and stop time, the purification effect of the ecological filter was better when plants were flourishing. To ensure better pollutant removal effect and reduce energy consumption, the ratio of aeration and stop time could be set at 3∶3 when plants were sparse and at 2∶3 when plants were flourishing. The intermittent aerated ecological filter has the advantages of simple design, small area, strong natural ecology and low operation cost, and effluent TN and COD can stably meet the first-level discharge standard of "Discharge standard of water pollutants for rural domestic sewage treatment facilities" (DB 14/726-2019) of Shanxi Province, NH4+-N and TP also have high first-level discharge standard-reaching rates. This study provides a reference for the application of ecological filter in rural areas of Jincheng City.
-
Key words:
- ecological filter /
- rural domestic sewage /
- intermittent aeration /
- hydrophyte
-
表 1 各阶段运行参数
Table 1. Operating parameters of each stage
阶段 生态滤池序号 运行前(后)期 运行时间/d 曝气量/(m3·h−1) 曝停周期/h 曝停比 Ⅰ1 1号 前期 0~40 —— 无曝气 —— Ⅰ2 1号 后期 40~80 —— 无曝气 —— Ⅱ1 2号 —— 0~10 1.5 持续曝气 —— Ⅱ2 2号 前期 10~20 1.5 5 2:3 Ⅱ3 2号 前期 20~30 1.5 6 3:3 Ⅱ4 2号 前期 30~40 1.5 6 4:2 Ⅱ5 2号 后期 40~50 1.5 6 4:2 Ⅱ6 2号 后期 50~60 1.5 6 3:3 Ⅱ7 2号 后期 60~70 1.5 5 2:3 Ⅱ8 2号 —— 70~80 —— 无曝气 —— 表 2 曝气成本与碳排放
Table 2. Aeration cost and carbon emission
阶段 曝停比 曝气电耗/(kWh·m−3) 曝气成本/(元·m−3) 碳排放量/(kg·m−3) 节能减排比例/% Ⅱ1 持续曝气 2.17 1.30 1.86 0 Ⅱ2 2:3 0.87 0.52 0.74 60.00 Ⅱ3 3:3 1.09 0.65 0.93 50.00 Ⅱ4 4:2 1.45 0.87 1.24 33.33 Ⅱ5 4:2 1.45 0.87 1.24 33.33 Ⅱ6 3:3 1.09 0.65 0.93 50.00 Ⅱ7 2:3 0.87 0.52 0.74 60.00 -
[1] 中华人民共和国中央人民政府. 黄河流域生态保护和高质量发展规划纲要. [EB/OL]. [2022-12-07]. http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm. [2] ZHANG Y, CHENG Y, YANG C, et al. Performance of system consisting of vertical flow trickling filter and horizontal flow multi-soil-layering reactor for treatment of rural wastewater[J]. Bioresource Technology, 2015, 193: 424-432. doi: 10.1016/j.biortech.2015.06.140 [3] LOUPASAKI E, DIAMADOPOULOS E. Attached growth systems for wastewater treatment in small and rural communities: A review[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(2): 190-204. [4] 陈登美, 朱彬, 康媞. 水力负荷对生态滤池处理农村污水影响研究[J]. 环境科学与技术, 2021, 44(S1): 264-269. [5] 潘伟亮, 练春江, 曹云鹏, 等. 生态滤池工艺处理农村生活污水的季节特征分析[J]. 水处理技术, 2021, 47(3): 106-109. [6] 杨妍. 农村污水生态滤池净化效果及根际微生物分布特征研究[D]. 贵阳: 贵州大学, 2020. [7] ZHAO Y, LIU B, ZHANG W, et al. Effects of plant and influent C: N: P ratio on microbial diversity in pilot-scale constructed wetlands[J]. Ecological Engineering, 2010, 36(4): 441-449. doi: 10.1016/j.ecoleng.2009.11.011 [8] 汪欣, 何尚卫, 潘继征, 等. 水生植物恢复对宛山荡水质及水体微生物代谢功能多样性的影响[J]. 生态与农村环境学报, 2021, 37(10): 1352-1360. doi: 10.19741/j.issn.1673-4831.2020.0913 [9] SU F, LI Z, LI Y, et al. Removal of total nitrogen and phosphorus using single or combinations of aquatic plants[J]. International Journal of Environmental Research and Public Health, 2019, 16: 4663. doi: 10.3390/ijerph16234663 [10] 金树权, 周金波, 朱晓丽, 等. 10种水生植物的氮磷吸收和水质净化能力比较研究[J]. 农业环境科学学报, 2010, 29(8): 1571-1575. [11] 李旭霞, 荣湘民, 谢桂先, 等. 不同水生植物吸收地表水中氮磷能力差异及其机理[J]. 水土保持学报, 2018, 32(1): 259-263. doi: 10.13870/j.cnki.stbcxb.2018.01.040 [12] 刘飞, 左娜, 罗耿彬, 等. 生态渗滤池对微污染水中COD·氨氮和总磷去除效果研究[J]. 安徽农业科学, 2020, 48(2): 75-77. doi: 10.3969/j.issn.0517-6611.2020.02.021 [13] 吴正松, 罗义涌, 何强, 等. 生态滤池的开发及其对低浓度污水的净化效果[J]. 中国给水排水, 2015, 31(9): 33-36. [14] 潘伟亮, 李果, 秦宇, 等. 厌氧反应器/生态滤池处理农村生活灰水效果分析[J]. 中国给水排水, 2016, 32(11): 25-28. [15] 陈建军, 席银, 廖再毅, 等. 水力负荷和气温对生态滤池处理农户灰水的影响[J]. 农业环境科学学报, 2015, 34(10): 2012-2018. [16] 吴松, 陈华, 刘春晓, 等. UASB-喷洒式生态滤池组合工艺处理农村生活污水[J]. 环境科技, 2020, 33(1): 36-40. [17] 谢春生, 黄建翔, 王水木. 生态水培槽/生态滤池组合工艺处理农村生活污水[J]. 中国给水排水, 2019, 35(16): 86-89. [18] 刘亚妮, 朱宏伟, 黄荣新, 等. 曝气生态滤池中微生物群落组成及物种多样性[J]. 中国环境科学, 2020, 40(3): 1075-1080. doi: 10.3969/j.issn.1000-6923.2020.03.017 [19] 朱宏伟. 新型基质填料应用于曝气生态滤池处理农田排水氮磷试验研究[D]. 兰州: 兰州理工大学, 2018. [20] 刘平养, 沈哲. 农村生活污水处理的成本有效性研究: 问题及展望[J]. 复旦学报(自然科学版), 2015, 54(01): 91-97. [21] 庞文, 周中仁, 冯成洪, 等. 北京农村污水处理设施停运成因大样本调研解析[J]. 给水排水, 2021, 57(S1): 160-166. [22] REN Y, YU G, SHI C, et al. Majorbio Cloud: A one-stop, comprehensive bioinformatic platform for multiomics analyses[J]. iMeta, 2022, 1(2): e12. [23] 范荣桂, 范彬, 杜显云, 等. 深床过滤机理及其在水处理中的应用研究与进展[J]. 环境污染治理技术与设备, 2005, 6(9): 1-6. [24] 林剑华, 杨扬, 李丽, 等. 8种湿地植物的生长状况及泌氧能力[J]. 湖泊科学, 2015, 27(6): 1042-1048. [25] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175-1180. doi: 10.1016/j.chemosphere.2011.05.054 [26] 山西省生态环境厅. 农村生活污水处理设施水污染物排放标准: DB 14/726-2019[S].https://sthjt.shanxi.gov.cn/zwgk/hbbz/dfhjbhbz/202111/t20211114_3212087.shtml. [27] BRITTO D T, KRONZUCKER H J. NH4+ toxicity in higher plants: A critical review[J]. Journal of Plant Physiology, 2002, 159(6): 567-584. doi: 10.1078/0176-1617-0774 [28] BITTSANSZKY A, PILINSZKY K, GYULAI G, et al. Overcoming ammonium toxicity[J]. Plant Science, 2015, 231: 184-190. doi: 10.1016/j.plantsci.2014.12.005 [29] 宋睿, 姜锦林, 耿金菊, 等. 不同浓度铵态氮对苦草的生理影响[J]. 中国环境科学, 2011, 31(3): 448-453. [30] 张树楠, 肖润林, 刘锋, 等. 生态沟渠对氮、磷污染物的拦截效应[J]. 环境科学, 2015, 36(12): 4516-4522. [31] 葛滢, 常杰, 王晓月, 等. 两种程度富营养化水中不同植物生理生态特性与净化能力的关系[J]. 生态学报, 2000, 20(6): 1050-1055. doi: 10.3321/j.issn:1000-0933.2000.06.024 [32] 徐德福, 徐建民, 王华胜, 等. 湿地植物对富营养化水体中氮、磷吸收能力研究[J]. 植物营养与肥料学报, 2005, 11(5): 597-601. doi: 10.3321/j.issn:1008-505X.2005.05.005 [33] 刘哲哲, 倪兆奎, 刘思儒, 等. 湖泊沉积物有机磷释放动力学特征及水质风险[J]. 环境科学, 2022, 43(6): 3058-3065. doi: 10.13227/j.hjkx.202110121 [34] ZHANG M, ZHANG H, XU D, et al. Removal of ammonium from aqueous solutions using zeolite synthesized from fly ash by a fusion method[J]. Desalination, 2011, 271(1/2/3): 111-121. [35] NJOROGE B N K, MWAMACHI S G. Ammonia removal from an aqueous solution by the use of a natural zeolite[J]. Journal of Environmental Engineering and Science, 2004, 3(2): 147-154. doi: 10.1139/s03-070 [36] NGUYEN M L, TANNER C C. Ammonium removal from wastewaters using natural New Zealand zeolites[J]. New Zealand Journal of Agricultural Research, 2010, 41(3): 427-446. [37] 李圣品, 刘菲, 陈鸿汉, 等. 法库沸石对氨氮的吸附特性和阳离子交互过程[J]. 环境工程学报, 2015, 9(1): 157-163. doi: 10.12030/j.cjee.20150126 [38] 赵统刚, 吴德意, 孔海南, 等. 粉煤灰合成沸石同步去除污水中氮磷的初步研究[C]//中国环境科学学会. 第二届全国环境化学学术报告会. 上海, 2004. [39] SARMA S J, TAY J H. Carbon, nitrogen and phosphorus removal mechanisms of aerobic granules[J]. Critical Reviews in Biotechnology, 2018, 38(7): 1077-1088. doi: 10.1080/07388551.2018.1451481 [40] 李林锋, 年跃刚, 蒋高明. 植物吸收在人工湿地脱氮除磷中的贡献[J]. 环境科学研究, 2009, 22(3): 337-342. doi: 10.13198/j.res.2009.03.79.lilf.015 [41] 郭昌梓, 王凯, 苏朋娟, 等. 不同曝气剪切条件下活性污泥絮体特性研究[J]. 陕西科技大学学报(自然科学版), 2014, 32(5): 20-26. [42] 夏德建, 任玉珑, 史乐峰. 中国煤电能源链的生命周期碳排放系数计量[J]. 统计研究, 2010, 27(8): 82-89. doi: 10.3969/j.issn.1002-4565.2010.08.012