-
污泥膨胀会制约活性污泥法处理污水效率、影响出水水质[1]。造纸废水的COD和悬浮物两个指标较高,并存在缺少氮、磷元素等特点[2-3],采用活性污泥法进行处理时,往往会产生污泥膨胀问题[4-5],严重时会影响出水水质。污泥膨胀的控制方法分为药剂控制、环境调控和代谢机制控制。郝晓地[6]从污泥膨胀形成机理、研究进展、控制修复措施几个方面对活性污泥的污泥膨胀进行了系统分析;艾胜书[7]根据污泥膨胀特性研究现状,分析了污泥膨胀的主要因素和控制措施,提出了添加选择器、调控运行参数等污泥膨胀控制思路;范念斯等[8]以膨胀污泥为接种污泥,通过续批实验研究发现微丝菌优势生长的影响因素主要有油酸碳源、厌氧/好氧交替环境和低温;范念斯等[9]从污泥负荷角度研究了丝状菌膨胀的控制方法;杨雄等[10]从微生物角度对氮磷缺乏所引发的污泥沉降性能进行了系统研究。刘春[11]通过对某造纸厂污泥浓度控制、污泥补充措施,解决了该厂污泥膨胀问题;张雪[12]用氧化沟处理造纸废水引发污泥膨胀并进行治理,研究投加聚合氯化铝、生物絮凝剂、双氧水等几种药剂来控制污泥膨胀。这些污泥膨胀控制方法往往只能在实验室开展的,而在实际造纸废水处理工艺中,对污泥膨胀成因进行研究,并总结污泥膨胀调控经验的较少。特别是在大型造纸废水处理厂,控制污泥膨胀对提高工艺运行稳定性、减少环境污染风险具有重要意义。
本案例旨在解决我国南方某大型废纸造纸污水处理厂 (处理规模15×104 m3·d−1) 的污泥膨胀问题,采取补充进水氮磷营养物质、更换混凝剂、控制系统DO、加大预曝气等调控措施以改变优势丝状菌的生存环境,并进行污泥膨胀控制,再结合污泥镜检和高通量测序分析,从微生物群落角度分析污泥膨胀前后菌群变化,以深入了解膨胀污泥群落特性,以期为同类污水处理厂探索节能降耗的污泥膨胀控制方法提供参考。
某大型造纸废水处理厂的污泥膨胀控制及微生物群落结构分析
Sludge bulking control and microbial community structure analysis of a large papermaking wastewater treatment plant
-
摘要: 以一座处理规模为15×104 m3·d−1的造纸废水处理厂污泥膨胀控制为研究对象。通过进水补充氮磷营养物质、进水更换混凝剂去除硫化物,控制系统DO为1.5 mg·L−1 ,选择池加大预曝气等措施改变优势丝状菌的生存环境。经过调控,系统SV、SVI出现显著下降,分别从98%、198 mL·g−1下降至37%、80 mL·g−1,恢复至正常范围,从而解决了该厂的污泥膨胀问题。对污泥进行微生物镜检和染色镜检分析发现,该厂活性污泥膨胀主要为Type 021N型丝状菌 (发硫菌) 和Beggiatoa sp. (贝氏硫细菌) 过度繁殖引起的丝状膨胀。对污泥膨胀控制前后的活性污泥进行高通量测序以分析其微生物菌群结构,从种属变化角度发现在污泥膨胀前后,Actinobacteria门中Rhodococcus属占比从2.92%下降为0.19% 、Mycolata属占比从0.1%下降为0,Alpha-proteobacteria门中的Meganema属占比从0.14%下降为0、Gamma-proteobacteria中Thiothrix占比从0.18%下降为0.01%。这几种微生物是引起该厂污泥膨胀的主要菌属。本研究案例在解决污泥膨胀问题的前提下,减少了药剂用量,提升了系统处理能力,避免了污泥流失,吨水电耗得以降低,且方法简单易行高效,可为其他同类污水处理厂解决污泥膨胀问题提供参考。Abstract: A papermaking wastewater treatment plant with a processing capacity of 15×104 m3·d−1 was taken as the research project to study the control of sludge bulking in the process. The living environment of dominant filamentous bacteria was changed by adding nitrogen and phosphorus nutrients to the influent, replacing coagulant with water and removing sulfide. controlling the DO of the system at 1.5 mg · L−1, and increasing pre-aeration in the selection tank. After regulation and control, SV and SVI in the system decreased significantly from 98% and 198 mL·g−1 to 37% and 80 mL·g−1, respetively,, and returned to the normal range, which successfully solved the sludge bulking problem of the plant. The results showed that the activated sludge bulking of the plant was mainly caused by the overgrowth of Type 021N filamentous bacteria (Thiobacillus sp.) and Beggiatoa sp. Based on the high flux analysis of microbial flora structure of activated sludge before and after sludge bulking control, from the perspective of species change, it was found that before and after sludge bulking, the proportion of Rhodococcus in Actinobacteria decreased from 2.92% to 0.19%, the proportion of Mycolata decreased from 0.1% to 0, the proportion of Meganema decreased from 0.14% to 0, and the proportion of Thiothrix decreased from 0.18% to 0.01%. These kinds of microorganisms were the main bacteria causing sludge bulking in the plant. The solution of this case can provide reference for other similar sludge bulking problems.
-
表 1 污水厂进出水水质
Table 1. Inlet and outlet water quality of the wastewater treatment plant
水样类型 COD/ (mg·L−1) BOD5/ (mg·L−1) NH+ 4-N/ (mg·L−1) TN / (mg·L−1) TP / (mg·L−1) 进水硫化物/ (mg·L−1) 设计进水水质 1 000 350 — — 0.25 — 进水水质 1 125 330 13.6 32.26 0.6 4.3 初沉池出水水质 843 242 12.48 33.02 0.58 3.5 出水水质 46 5.68 1.19 7.98 0.03 — 排放标准 (≤) 60 10 5 10 0.5 — 表 2 污泥膨胀前后COD组分变化对比
Table 2. Comparison of COD composition before and after sludge bulking
项目 COD/ (mg·L−1) 溶解性COD/ (mg·L−1) VFA占比/% 进水口 1 084 909 37 初沉池出口 860 790 35.8 生化池出口 122 109 26.2 调控前选择池出水 390 310 26 调控后选择池出水 350 285 17 -
[1] 杨敏, 杨思敏, 范念斯, 等. 微丝菌诱发污泥膨胀生长特性控制策略研究进展[J]. 环境工程学报, 2019, 13(2): 253-263. [2] 周娅. 改良型厌氧颗粒污泥膨胀床反应器处理造纸废水的试验研究[D]. 郑州: 郑州大学, 2020. [3] 苟青, 何滔, 朱旺平, 等. MBR工艺在造纸废水处理中的应用实验[J]. 中华纸业, 2020, 41(20): 21-25. [4] 张玉生, 邹丽. 臭氧催化氧化与芬顿工艺在造纸废水深度处理中的对比分析[J]. 中华纸业, 2022, 43(14): 39-43. [5] 陈学萍, 占正奉, 伊浩, 等. 废纸制浆造纸废水处理中溶解性有机物转化特性的研究[J]. 中国造纸, 2022, 41(7): 1-10. [6] 郝晓地, 朱景义, 曹秀芹. 污泥膨胀形成机理及控制措施研究现状和进展[J]. 环境污染治理技术与设备, 2006, 7(5): 1-9. [7] 艾胜书, 王子恒, 杜林竹, 等. 污泥膨胀特性及控制研究现状[J]. 环境保护科学, 2022, 48(3): 57-64. [8] FAN N S, QI R, ROSSETTI S, et al. Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge[J]. Science of the Total Environment, 2017, 609: 1192-1199. doi: 10.1016/j.scitotenv.2017.07.261 [9] FAN N S, WANG R F, QI R, et al. Control strategy for filamentous sludge bulking Bench-scale test and full-scale application.[J]. Chemosphere, 2018, 210: 709-716. doi: 10.1016/j.chemosphere.2018.07.028 [10] 杨 雄, 彭永臻, 郭建华, 等. 氮/磷缺乏对污泥沉降性能及丝状菌生长的影响[J]. 化工学报, 2014, 65(3): 1040-1048. [11] 刘春, 张安龙. 造纸厂废水处理污泥膨胀的解决实例[J]. 纸和造纸, 2009, 28(1): 51-52. [12] 张雪. 氧化沟处理造纸废水活性污泥膨胀的引发与控制[D]. 西安: 陕西科技大学, 2014. [13] 范念斯, 王润芳, 齐嵘, 等. 多维度耦合丝状菌监测方法在污泥膨胀中的应用[J]. 中国给水排水, 2017, 33(15): 6-12. [14] 尚越飞, 王申, 宗倪, 等. 污水生物处理工艺低温下微生物种群结构[J]. 环境科学, 2020, 41(10): 4636-4643. [15] 李倩. 城镇污水脱氮除磷系统污泥膨胀生物学成因及控制措施研究[D]. 青岛: 青岛理工大学, 2015. [16] CHUDOBA J, GRAU P, OTTOVA V. Control of activated-sludge filamentous bulking-Ⅱ: Selection of microorganisms by means of a selector[J]. Water Research, 1973, 7(10): 1389-1398. doi: 10.1016/0043-1354(73)90113-9 [17] 高春娣, 侯春艳, 李悦等. 硫酸盐还原产物对EBPR系统影响的研究进展[J]. 北京工业大学学报, 2022, 48(8): 898-906. doi: 10.11936/bjutxb2021010028 [18] 王硕, 李长波, 赵国峥等. 活性污泥丝状菌膨胀生物群落及调控研究进展[J]. 应用与环境生物学报, 2022, 28(2): 535-542. [19] 张程程. 低DO状态丝状菌膨胀的微生物表面特性[D]. 重庆: 重庆大学, 2018. [20] 徐静静. 高分子有机-无机复配混凝沉淀剂的制备及其在废纸造纸废水处理中的应用[D]. 杭州: 浙江工业大学, 2015. [21] JENKINS D, RICHARD M G, DAIGGER G T. Manual on the causes and control of activated sludge bulking and foaming and other solids separation problems[M]. Florida : CRC Press, 2003. [22] 周利, 彭永臻, 徐晓军, 等. 丝状菌污泥膨胀机理与控制方法[J]. 苏州科技学院学报(工程技术版), 2005(18): 43-47.