-
农村生活污水按照其污水来源和水质特征的不同,可以分为黑水和灰水两大类[1],其中黑水是含有粪便和尿液的污水,其污染物质量浓度高、氮磷含量丰富,适合进行农田资源化利用[2-4],灰水主要包括餐厨污水、洗涤污水和洗浴污水等,其污染物质量浓度较低,适合进行收集处理后排放[5-7]。针对黑水和灰水的特点,许多农村地区开展了黑水和灰水的分质收集,即采用化粪池收集处理黑水用于农田利用,采用重力流排水系统单独收集灰水进行处理并排放[8-10]。
排水系统在输送污水的过程中,污水中一部分悬浮微生物会附着在系统内壁并利用污水中的有机物进行生长繁殖,逐渐形成管道生物膜[11-12]。污水中的悬浮微生物和管道生物膜共同作用可以去除污水中的部分有机物,产生一定的污水预处理效果[13-15],但同时也会产生H2S和CH4等气体产物[16-17]。其中,H2S是具有恶臭的有毒气体[12,18],其与污水中携带并逸散到排水系统气相中的其他恶臭气体在排水系统内的聚集可能影响周边居民的正常生活[19-21]。除H2S以外,恶臭气体还包括苯乙烯(C8H8)、氨气(NH3)、三甲胺(C3H9N)、二甲基二硫醚(C2H6S2)、甲硫醚(C2SH6)等[18, 22-23],其在排水系统中的积聚和逸散是一个在工程实践过程中普遍发生的问题。为解决这一问题,有关研究团队开展了一系列研究[24-26],指出了灰水收集系统具有H2S等恶臭气体积聚的风险[17,27]。但除H2S以外,灰水收集系统的气相中是否还存在其他恶臭气体仍有待确认。更进一步的,灰水收集系统中恶臭气体的分布规律尚不明晰,限制了灰水收集技术的改良和运维管理措施的优化,亟待开展相关研究。
为获得农村灰水收集系统的恶臭气体分布及传输规律,本研究以相关中试装置为载体,利用恶臭分析仪器和数理统计方法探究装置全流程的恶臭气体时空分布规律,以期为农村重力流灰水收集系统的技术优化和运维管理提供数据支撑。
农村重力流灰水收集系统的恶臭气体时空分布规律
Spatial and temporal distribution patterns of malodorous gases in rural gravity-flow graywater collection systems
-
摘要: 为探究农村重力流灰水收集系统的恶臭气体时空分布规律,构建了一套中试研究装置并研究了其全流程的恶臭气体质量浓度。结果表明:在相对静止的灰水储水池中,苯乙烯(C8H8)是质量浓度最高的恶臭气体(平均质量浓度为55.68 mg·m−3),二硫化碳(CS2)的质量浓度最低(平均质量浓度为0.11 mg·m−3);灰水收集系统在早晨(6:00—8:00)和傍晚(17:00—19:00)的恶臭气体质量浓度较高,其OU平均值分别是其他时段OU平均质量浓度的1.82~23.7倍和1.87~24.41倍;灰水收集系统中的跌水井和管道变径处是恶臭气体质量浓度较高的区域,其OU平均值分别是其上下游区域OU平均值的1.2倍和1.6倍。在农村重力流灰水收集系统的运维过程中,应该关注C8H8和C2SH6等气体的浓度变化以更好的控制恶臭逸散问题。Abstract: In order to investigate the spatial and temporal distribution patterns of malodorous gases in the rural gravity-flow graywater collection system, a pilot study set was constructed and the malodorous gas concentrations of the whole process were investigated. The results shows that styrene (C8H8) was the odorous gas with the highest concentration (average concentration of 55.68 mg·m−3) and carbon disulfide (CS2) had the lowest concentration (average concentration of 0.11 mg·m−3) in the relatively stationary grey water storage tank; The grey water collection system had a higher concentration of malodorous gases in the morning (6:00—8:00) and evening (17:00—19:00), and its OU average concentration was 1.82~23.7 times and 1.87~24.41 times higher than the OU average concentration in other periods, respectively. Higher concentration of malodorous gases occurred at the drop wells and pipe reducers in the grey water collection system, and their OU average concentrations were 1.2 times and 1.6 times of the OU average concentrations in the upstream and downstream areas, respectively. During the operation and maintenance of the rural gravity flow graywater collection system, the concentration changes in gases such as C8H8 and C2SH6 should be paid attention to in order to better control the odor fugitive problem.
-
Key words:
- grey water /
- collection system /
- odor /
- time distribution /
- space distribution
-
表 1 灰水水质参数
Table 1. Grey water quality parameters
检测结果 pH COD/
(mg·L−1)NH4+-N/
(mg·L−1)TN/(mg·L−1) TP/(mg·L−1) DO/
(mg·L−1)硫化物/(mg·L−1) 范围 6.52-7.58 214-459.5 9.83-42.91 22.83-69.43 0.9-1.5 1.9-4.5 4.24-9.94 均值 7.05 361.78 31.28 49.85 1.21 3.1 6.3 表 2 流量与恶臭质量浓度的相关性表
Table 2. Correlation table between flow rate and odor concentration
项目 流量 OU H2S NH3 C8H8 C3H9N C2SH6 C2H6S2 流量 1 0.719** 0.689** 0.638** 0.687** 0.634** 0.800** 0.729** OU 1 0.971** 0.933** 0.955** 0.905** 0.913** 0.941** H2S 1 0.951** 0.965** 0.924** 0.898** 0.960** NH3 1 0.941** 0.962** 0.872** 0.962** C8H8 1 0.917** 0.886** 0.954** C3H9N 1 0.863** 0.938** C2SH6 1 0.907** C2H6S2 1 注:**表示在P<0.01 级别上相关性显著。 表 3 不同位置异味质量浓度参数
Table 3. Odor concentration parameters at different positions
检测
结果OU 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 1 138.8~1 826.4 2 001.6~3 704.6 3 216~4 677 2 395.8~3 606.4 1 052.2~1 644.6 555.6~1 878.6 532.8~2 223.6 314.4~1 000.2 63.6~206.4 均值 1 392.47 2 423.87 3 162.73 2 856.80 1 414.43 1 149.20 1 421.6 586.07 116.5 标准差 308.30 922.96 1 258.70 534.70 259.25 548.58 692.99 297.55 63.90 检测
结果H2S/ (mg·m−3) 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 0.30~1.82 3.68~6.86 3.01~17.69 0.23~14.47 0.58~2.14 0.77~2.33 0.70~3.86 0.33~1.02 0.05~0.22 均值 1.16 5.41 11.67 5.51 1.42 1.52 2.14 0.68 0.12 标准差 0.49 1.31 6.28 5.40 0.50 0.72 1.30 0.40 0.07 检测
结果C8H8/(mg·m−3) 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 1.70~8.28 0.06~40.14 0.06~87.04 1.50~13.54 5.78~13.54 4.23~14.60 3.93~27.20 0.76~9.32 0.89~1.90 均值 7.32 15.21 26.47 22.82 9.07 9.72 14.20 4.61 1.39 标准差 4.52 14.75 32.41 14.72 2.94 4.28 9.69 3.55 0.41 检测
结果NH3/(mg·m−3) 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 0.34~2.84 6.97~13.32 4.02~26.06 0.42~22.54 0.32~3.45 0.11~3.30 0.31~5.90 0~1.11 0~0.48 均值 1.42 9.59 17.24 8.35 1.89 1.62 2.80 0.50 0.18 标准差 0.82 2.71 9.52 8.47 1.08 1.36 2.32 0.46 0.21 检测
结果C3H9N/ (mg·m−3) 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 0.25~1.29 3.16~5.67 2.19~9.12 1.76~9.26 0.09~1.20 0.19~1.78 0.17~2.65 0~0.91 0~0.26 均值 0.78 4.48 6.10 4.88 0.80 0.92 1.29 0.49 0.09 标准差 0.38 1.03 2.90 3.19 0.43 0.70 1.03 0.37 0.12 检测
结果C2H6S2/ (mg·m−3) 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 0.36~3.52 5.60~14.46 6.49~35.96 0.58~15.46 0.39~3.02 0.61~4.31 0.75~7.75 0.14~3.87 0~1.25 均值 1.59 8.69 19.05 7.41 1.93 2.12 3.76 1.65 0.49 标准差 1.05 4.08 12.42 5.63 1.05 1.54 2.94 1.60 0.55 检测
结果C2SH6/(mg·m−3) 集水池 检查口 跌水井 DN100管段 转向检查井1 转向检查井2 DN150管段 直通检查井 出水口 范围 0.07~7.20 0.06~32.86 7.91~62.66 8.57~33.20 5.14~6.24 1.73~7.67 1.63~16.80 0.40~6.46 0.05~1.08 均值 2.64 12.81 33.24 20.99 5.73 5.64 7.91 2.95 0.61 标准差 2.64 12.16 22.54 10.06 0.45 2.76 6.46 2.57 0.43 -
[1] 李文凯, 郑天龙, 刘俊新. 农村小管径重力流灰水管道中生物膜细菌群落的特征[J]. 环境工程学报,2020, 14(3): 691-700. [2] BUTKOVSKYI A, NI G, LEAL L H, et al. Mitigation of micropollutants for black water application in agriculture via composting of anaerobic sludge[J]. Journal of Hazardous Materials, 2016, 303: 41-47. doi: 10.1016/j.jhazmat.2015.10.016 [3] HARDER R, WIELEMAKER R, LARSEN T A, et al. Recycling nutrients contained in human excreta to agriculture: pathways, processes, and products[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(8): 695-743. doi: 10.1080/10643389.2018.1558889 [4] ZIEMBA C, LARIVé O, DECK S, et al. Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system[J]. Water Research X, 2019, 2: 100020. doi: 10.1016/j.wroa.2018.100020 [5] KULANDAISWAMY N D M, NITHYANANDAM M, PALANIVEL V. Household greywater treatment using phytoremediation technology and CapsNet model[J]. Plant and Soil, 2022, 478(1-2): 731-745. doi: 10.1007/s11104-022-05539-6 [6] MAIMON A, GROSS A. Greywater: Limitations and perspective[J]. Current Opinion in Environmental Science & Health, 2018, 2: 1-6. [7] SHAIKH I N, AHAMMED M M. Quantity and quality characteristics of greywater: A review[J]. Journal of Environmental Management, 2020, 261: 110266. doi: 10.1016/j.jenvman.2020.110266 [8] BOYJOO Y, PAREEK V K, ANG M. A review of greywater characteristics and treatment processes[J]. Water Science & Technology, 2013, 67(7): 1403-1424. [9] KOZMINYKH P, HEISTAD A, RATNAWEERA H C, et al. Impact of organic polyelectrolytes on coagulation of source-separated black water[J]. Environmental Technology, 2016, 37(14): 1723-1732. doi: 10.1080/09593330.2015.1130175 [10] LARSEN T A, GRUENDL H, BINZ C. The potential contribution of urine source separation to the SDG agenda: A review of the progress so far and future development options[J]. Environmental Science:Water Research & Technology, 2021, 7(7): 1161-1176. [11] JIN P, SHI X, SUN G, et al. Co-variation between distribution of microbial communities and biological metabolization of organics in urban sewer systems[J]. Environmental Science & Technology, 2018, 52(3): 1270-1279. [12] LI W, ZHENG T, MA Y, et al. Current status and future prospects of sewer biofilms: Their structure, influencing factors, and substance transformations[J]. Science of the Total Environment, 2019, 695: 133815. doi: 10.1016/j.scitotenv.2019.133815 [13] HE Q, YIN F, LI H, et al. Suitable flow pattern increases the removal efficiency of nitrogen in gravity sewers: a suitable anoxic and aerobic environment in biofilms[J]. Environmental Science and Pollution Research, 2018, 25: 15743-15753. doi: 10.1007/s11356-018-1768-x [14] JIN P, WANG B, JIAO D, et al. Characterization of microflora and transformation of organic matters in urban sewer system[J]. Water Research, 2015, 84: 112-119. doi: 10.1016/j.watres.2015.07.008 [15] ZHAO N, NGO H H, LI Y, et al. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Frontiers of Environmental Science & Engineering, 2019, 13: 1-12. [16] NIELSEN A H, HVITVED‐JACOBSEN T, VOLLERTSEN J. Effect of sewer headspace air‐flow on hydrogen sulfide removal by corroding concrete surfaces[J]. Water Environment Research, 2012, 84(3): 265-273. doi: 10.2175/106143012X13347678384206 [17] PARK K, LEE H, PHELAN S, et al. Mitigation strategies of hydrogen sulphide emission in sewer networks: A review[J]. International Biodeterioration & Biodegradation, 2014, 95: 251-261. [18] LI R, HAN Z, SHEN H, et al. Volatile sulfur compound emissions and health risk assessment from an A2/O wastewater treatment plant[J]. Science of the Total Environment, 2021, 794: 148741. doi: 10.1016/j.scitotenv.2021.148741 [19] CARRERA L, SPRINGER F, LIPEME-KOUYI G, et al. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers[J]. Water Science & Technology, 2017, 75(7): 1529-1538. [20] FUENTES M, SONG H R, GHOSH S K, et al. Spatial association between speciated fine particles and mortality[J]. Biometrics, 2006, 62(3): 855-863. doi: 10.1111/j.1541-0420.2006.00526.x [21] LEE M, WI J, KOZIEL J A, et al. Effects of uv-a light Treatment on ammonia, hydrogen sulfide, greenhouse gases, and ozone in simulated poultry barn conditions[J]. Atmosphere, 2020, 11(3): 283. doi: 10.3390/atmos11030283 [22] LIU Z. Urban sewage treatment odor gas release characteristics and regional differences[J]. Environmental Technology & Innovation, 2021, 21: 101190. [23] 张涛. 城市排污管道有害气体分布规律与危害控制研究[D]. 北京: 首都经济贸易大学, 2016. [24] HAMODA M F, ALSHALAHI S F. Assessment of hydrogen sulfide emission in a wastewater pumping station[J]. Environmental Monitoring and Assessment, 2021, 193(6): 352. doi: 10.1007/s10661-021-09116-9 [25] SIGGINS A, BURTON V, ROSS C, et al. Effects of long-term greywater disposal on soil: A case study[J]. Science of the Total Environment, 2016, 557: 627-635. [26] YANG Z, ZHU D Z, YU T, et al. Case study of H2S release and transport in a trunk sewer with drops[J]. Water Science & Technology, 2020, 82(11): 2271-2281. [27] EDWINI-BONSU S, STEFFLER P. Modeling ventilation phenomenon in sanitary sewer systems: A system theoretic approach[J]. Journal of Hvdraulic Engineering, 2006, 132(8): 778-790. doi: 10.1061/(ASCE)0733-9429(2006)132:8(778) [28] 周建明, 全斐, 赵春杰, 等. 基于有害气体监测的多作业面隧道通风管理[J]. 中国铁路, 2021, 705(03): 26-32. doi: 10.19549/j.issn.1001-683x.2021.03.026 [29] KNIGHT M A, IOANNIDIS M A, SALIM F, et al. Health risks assessment from cured-in-place pipe lining fugitive styrene emissions in laterals[J]. Journal of Pipeline Systems Engineering and Practice, 2023, 14(1): 04022056. doi: 10.1061/(ASCE)PS.1949-1204.0000690 [30] WANG B, SIVRET E, PARCSI G, et al. Reduced sulfur compounds in the atmosphere of sewer networks in Australia: geographic (and seasonal) variations[J]. Water Science & Technology, 2014, 69(6): 1167-1173. [31] SIVRET E C, WANG B, PARCSI G, et al. Prioritisation of odorants emitted from sewers using odour activity values[J]. Water Research, 2016, 88: 308-321. [32] PANDEY S K, KIM K-H, KWON E E, et al. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas[J]. Environmental Research, 2016, 146: 235-244. doi: 10.1016/j.envres.2015.12.033 [33] HUANG C-H, CHEN K-S, WANG H-K. Measurements and PCA/APCS analyses of volatile organic compounds in Kaohsiung municipal sewer systems, southern Taiwan[J]. Aerosol and Air Quality Research, 2012, 12(6): 1315-1326. doi: 10.4209/aaqr.2012.02.0035 [34] TEIXEIRA J V, MIRANDA S, MONTEIRO R A, et al. Assessment of indoor airborne contamination in a wastewater treatment plant[J]. Environmental Monitoring and Assessment, 2013, 185: 59-72. doi: 10.1007/s10661-012-2533-0 [35] DINCER F, MUEZZINOGLU A. Odor-causing volatile organic compounds in wastewater treatment plant units and sludge management areas[J]. Journal of Environmental Science and Health Part A, 2008, 43(13): 1569-1574. doi: 10.1080/10934520802293776 [36] BOLDEN A L, KWIATKOWSKI C F, COLBORN T. New look at BTEX: are ambient levels a problem?[J]. Environmental Science & Technology, 2015, 49(9): 5261-5276. [37] DURMUSOGLU E, TASPINAR F, KARADEMIR A. Health risk assessment of BTEX emissions in the landfill environment[J]. Journal of Hazard Mater, 2010, 176(1-3): 870-877. doi: 10.1016/j.jhazmat.2009.11.117 [38] 贺墨梅, 刘焱. 污水集中式与分散式处理技术的比较研究[J]. 西南给排水, 2006, 28(4): 20-23. [39] 刘中, 金树权, 罗艳. 宁波地区农村生活污水产污特征分析研究[J]. 环境污染与防治, 2017, 39(10): 1127-1130. doi: 10.15985/j.cnki.1001-3865.2017.10.017 [40] 谷天峰. 排水系统恶臭污染及挥发性有机物的控制效果与机制研究 [D]. 杭州: 浙江大学, 2019. [41] LIU Y, NI B-J, GANIGUé R, et al. Sulfide and methane production in sewer sediments[J]. Water Research, 2015, 70: 350-359. doi: 10.1016/j.watres.2014.12.019 [42] 李伟芳, 耿静, 翟增秀, 等. 恶臭物质的嗅觉阈值与致臭机理研究概况与展望[J]. 安全与环境学报, 2015, 15(3): 327-330. doi: 10.13637/j.issn.1009-6094.2015.03.069 [43] JIANG G, MELDER D, KELLER J, et al. Odor emissions from domestic wastewater: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(17): 1581-1611. doi: 10.1080/10643389.2017.1386952 [44] SMET E, LENS P, LANGENHOVE H V. Treatment of waste gases contaminated with odorous sulfur compounds[J]. Critical Reviews in Environmental Science and Technology, 1998, 28(1): 89-117. doi: 10.1080/10643389891254179