-
染料废水种类繁多、排放量大,具有组成复杂、难生物降解的特点[1-2],在自然环境中将会导致富营养化继而影响生态平衡,同时部分染料的致癌作用会对人体健康造成严重影响[3]。染料废水常用处理方法包括吸附[4]、膜处理[5]、生物降解[6]、混凝[7]、高级氧化处理(AOPs)等。吸附法工艺简单,但材料的最大吸附量及再生能力使其限制性较强;膜处理法虽然可行,但操作过程中需较高压力和反复清洗导致其寿命较短[8];生物降解对环境要求较高,常需与其他工艺联合使用[9]。传统技术均存在运行时间长,运行成本高及二次污染等问题,因此,开发高效深度处理染料废水的方法至关重要。
电催化氧化可通过阴极还原与阳极氧化反应产生氧化活性基团,实现染料污染废水脱色和降解反应,具有操作简单、反应条件温和、适用范围广的特点 [10-12]。除阳极氧化可产生强氧化自由基外,电化学过程中阴极两电子氧还原反应(oxygen reduction reaction, ORR)可原位产生H2O2[13-14](式(1)),阳极产生的自由基和阴极产生的H2O2形成有机物污染物降解[15-16]的协同效应,使废水中有机污染物转变为低毒的中间产物或矿化。但ORR反应受制于阴极的活性位点,活性位点少会导致H2O2产生受限,为了解决这一问题,国内外学者开展大量研究工作。研究发现以炭黑[17]、多壁碳纳米管(MWCNT)[18]、石墨烯[19]等碳材料复合碳质基底制备的气体扩散电极(gas diffusion electrode, GDE),因其表面丰富的含氧官能团,对ORR反应选择性较高[20-22],有利于O2的吸附和还原[23],促进羟基自由基产生,从而提升体系氧化能力。上述碳材料中,炭黑的热化学不稳定性会限制其耐久性、碳纳米管价格昂贵,相比之下三维多层片状结构的石墨烯具有价格适中、导电性好、比表面积大和化学惰性强[24]的优势,表现出优异的H2O2生成效率,是ORR反应的理想材料,但石墨烯在GDE结构下的电化学反应性能及其机理仍需进一步评估和探索。
本研究以活性碳纤维为基底,采用高导电、层状物理剥离的石墨烯为复合材料,PTFE为粘结剂,碳酸氢钠为造孔剂,通过超声-浸渍法制备石墨烯复合活性碳纤维气体扩散电极(GO/ACF)。以甲基橙废水为目标污染物组建电催化氧化与还原耦合处理体系,研究材料制备过程中GO与PTFE质量比、GO浆液中无水乙醇添加量、煅烧温度、煅烧时间对材料降解性能的影响,通过扫描电子显微镜、X-射线光电子能谱仪、傅里叶变换红外光谱仪对材料进行测试表征。考察不同的实验条件(初始电压、电解质浓度)下甲基橙电催化降解率,并探究GO/ACF产双氧水的性能、电化学性能及循环稳定性。本研究开发了一种制备简单、高效的气体扩散电极,可在甲基橙高效降解领域实现绿色、低成本处理,有望应用于更多废水处理。
石墨烯复合活性碳纤维气体扩散电极对甲基橙的降解性能
Degradation of methyl orange using reduced graphene combined activated carbon fiber gas diffusion electrode
-
摘要: 采用超声-浸渍法制备石墨烯(GO)复合活性碳纤维(ACF)气体扩散电极,对其微观形貌、表面元素及表面官能团等进行表征,通过甲基橙批量降解处理实验阐述阴极双氧水产生性能与机理。结果表明,制备条件GO与聚四氟乙烯分散液(PTFE)质量比为1:4、GO浆液中无水乙醇添加量100 mL、煅烧温度360 ℃、煅烧时间10 min得到的电极性能最优,GO/ACF较ACF在45 min电催化反应甲基橙降解率提升了21.11%,双氧水最终的质量浓度提高了4.65倍,GO/ACF对甲基橙的最终降解率为100.0%,扫描电子显微镜微观形貌表征结果表明,石墨烯可均匀负载于活性碳纤维表面,X-射线光电子能谱、傅里叶变幻红外光谱仪、循环伏安及电化学阻抗测试结果表明,石墨烯复合增加了电极表面C=O官能团含量,电极电阻减小了40.06%,有利于产生H2O2。对初始电压、电解质浓度影响降解因素进行了优化,使用10次后GO/ACF对甲基橙降解率仍保持在100.0%、甲基橙废水COD去除率仅下降了4.45%,表明GO/ACF具有较高循环稳定性。以上研究结果可为印染废水电催化高效脱色处理与有机污染物氧化降解提供理论依据与技术借鉴。Abstract: The ultrasonic-impregnation method was used to prepare the graphene (GO) combined activated carbon fiber (ACF) gas diffusion electrode, and its micro-morphology, surface elements, and surface functional groups were characterized. The batch tests of methyl orange degradation were conducted to clarify the performance and mechanism of hydrogen peroxide production at cathode. The experimental results showed that the optimal electrode performance occurred when the mass ratio of GO to polytetrafluoroethylene dispersion (PTFE) was 1:4, the amount of anhydrous ethanol added to GO slurry was 100 mL, the calcination temperature was 360 ℃, and the calcination time was 10 min. After 45 min of the electrocatalytic reaction, the degradation rate of methyl orange by GO/ACF increased by 21.11% compared with ACF, the final mass concentration of hydrogen peroxide increased by 4.65 times, and the degradation rate of methyl orange by GO/ACF reached 100.0%. The microscopic morphology observation of scanning electron microscopy showed that graphene could be uniformly loaded on the surface of activated carbon fibers. According to the analysis of X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, and electrochemical impedance testing results, graphene combination increased the content of C=O functional groups on the electrode surface and decreased electrode resistance by 40.06%, which was conducive to H2O2 production. The initial voltage and degradation factors of electrolyte concentration were optimized. After 10 recycles, GO/ACF still degrade methyl orange completely, while the CODCr removal rate of methyl orange wastewater only decreased by 4.45%, which indicated that GO/ACF had a good cycling stability. The results of the study can provide a theoretical basis and technical reference for highly efficient decolorization treatment of printing and dyeing wastewater by the electro-catalysis and the oxidative degradation of organic contaminants.
-
Key words:
- gas diffusion electrode /
- electrocatalytic oxidation /
- graphene /
- activated carbon fiber /
- methyl orange
-
表 1 ACF、GO/ACF甲基橙降解动力学方程及相关系数
Table 1. ACF, GO/ACF methyl orange degradation kinetic equations and the correlation coefficients
阴极材料 动力学方程 反应速率系数k/min−1 R2 ACF y= 0.027 7x+0.181 6 0.027 7 0.983 2 GO/ACF y = 0.058 2x+0.390 5 0.058 2 0.937 2 -
[1] LIU Y, JIN W, ZHAO Y, et al. Enhanced catalytic degradation of methylene blue by alpha-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions[J]. Applied Catalysis B: Environmental, 2017, 206: 642-652. doi: 10.1016/j.apcatb.2017.01.075 [2] 李燕, 杨建花, 李宝库, 等. 漆酶-介体系统对多种不同结构染料的脱色效果[J]. 环境工程学报, 2020, 14(12): 3308-3316. doi: 10.12030/j.cjee.201912179 [3] SHARMA M, AGARWAL S, MALIK R A, et al. Recent advances in microbial engineering approaches for wastewater treatment: A review[J]. Bioengineered, 2023, 14(1): 2184518. doi: 10.1080/21655979.2023.2184518 [4] TANG Q, ZHANG F J, CHEN W, et al. Floating-separation adsorbent for methylene blue and Pb (II) removal: Structure construction and adsorption mechanism[J]. Separation and Purification Technology, 2022, 295: 121332. doi: 10.1016/j.seppur.2022.121332 [5] LIU L, YU L, BORJIGIN B, et al. Fabrication of thin-film composite nanofiltration membranes with improved performance using β-cyclodextrin as monomer for efficient separation of dye/salt mixtures[J]. Applied Surface Science, 2021, 539: 148284. doi: 10.1016/j.apsusc.2020.148284 [6] BABU S S, MOHANDASS C, VIJAYARAJ A S, et al. Detoxification and color removal of Congo red by a novel Dietzia sp (DTS26) - A microcosm approach[J]. Ecotoxicology and Environmental Safety, 2015, 114: 52-60. doi: 10.1016/j.ecoenv.2015.01.002 [7] VERMA A K, DASH R R, BHUNIA P. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters[J]. Journal of Environmental Management, 2012, 93(1): 154-168. [8] MORADIHAMEDANI P. Recent advances in dye removal from wastewater by membrane technology: A review[J]. Polymer Bulletin, 2021, 79(4): 2603-2631. [9] BHATIA D, SHARMA N R, SINGH J, et al. Biological methods for textile dye removal from wastewater: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(19): 1836-1876. doi: 10.1080/10643389.2017.1393263 [10] SIRES I, BRILLAS E, OTURAN M A, et al. Electrochemical advanced oxidation processes: today and tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21: 8336-8367. doi: 10.1007/s11356-014-2783-1 [11] CHONG M N, SHARMA A K, BURN S, et al. Feasibility study on the application of advanced oxidation technologies for decentralised wastewater treatment[J] Journal of Cleaner Production, 2012, 35: 230-238. [12] VALLEJO M, ROMAN M F S, ORTIZ I, et al. Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment[J] Chemosphere, 2015, 118: 44-56. [13] 雷丽丹, 周正伟, 高雅, 等. 电化学氧化改性石墨毡电芬顿体系对三氯乙烯的降解研究[J]. 安全与环境工程, 2021, 28(3): 108-116. doi: 10.13578/j.cnki.issn.1671-1556.20201197 [14] ZHAN J H, WANG H J, PAN X J, et al. Simultaneous regeneration of p-nitrophenol-saturated activated carbon fiber and mineralization of desorbed pollutants by electro-peroxone process[J]. Carbon, 2016, 101: 399-408. doi: 10.1016/j.carbon.2016.02.023 [15] CHEN J, WAN J F, GONG Y G, et al. Effective electro-Fenton-like process for phenol degradation on cerium oxide hollow spheres encapsulated in porous carbon cathode derived from skimmed cotton[J]. Chemosphere, 2021, 270: 128661. doi: 10.1016/j.chemosphere.2020.128661 [16] CUI Y P, ZHOU Z W, GAO Y, et al. Energy saving intermittent electro-Fenton system combined with commercial MoS2 for effective rhodamine B degradation[J]. Journal of the Cleaner Production, 2021, 289: 125807. doi: 10.1016/j.jclepro.2021.125807 [17] LUO H J, LI C L, WU C Q, et al. Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode[J]. Electrochimica Acta, 2015, 186: 486-493. doi: 10.1016/j.electacta.2015.10.194 [18] GENDEL Y, ROTH H, ROMMERSKIRCHEN A, et al. A microtubular all CNT gas diffusion electrode[J]. Electrochemistry Communications, 2014, 46: 44-47. doi: 10.1016/j.elecom.2014.06.006 [19] ZHANG Z H, MENG H S, WANG Y J, et al. Fabrication of graphene@graphite-based gas diffusion electrode for improving H2O2 generation in Electro-Fenton process[J]. Electrochimica Acta, 2018, 260: 112-120. doi: 10.1016/j.electacta.2017.11.048 [20] DARVISHI CHESHMEH SOLTANI R, MASHAYEKHI M. Decomposition of ibuprofen in water via an electrochemical process with nano-sized carbon black-coated carbon cloth as oxygen-permeable cathode integrated with ultrasound[J]. Chemosphere, 2018, 194: 471-480. doi: 10.1016/j.chemosphere.2017.12.033 [21] KONDRATOWICZ I, NADOLSKA M, SAHIN S, et al. Tailoring properties of reduced graphene oxide by oxygen plasma treatment[J]. Applied Surface Science, 2018, 440: 651-659. doi: 10.1016/j.apsusc.2018.01.168 [22] WU G, SANTANDREU A, KELLOGG W, et al. Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition[J]. Nano Energy, 2016, 29: 83-110. doi: 10.1016/j.nanoen.2015.12.032 [23] LEI Z D, CHEN H B, YANG M, et al. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts[J]. Applied Surface Science, 2017, 426: 294-300. doi: 10.1016/j.apsusc.2017.07.183 [24] MOOSTE M, KIBENA-POLDSEPP E, OSSONON B D, et al. Oxygen reduction on graphene sheets functionalised by anthraquinone diazonium compound during electrochemical exfoliation of graphite[J]. Electrochimica Acta, 2018, 267: 246-254. doi: 10.1016/j.electacta.2018.02.064 [25] YU F K, ZHOU M H, YU X M. Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration[J]. Electrochimica Acta, 2015, 163: 182-189. doi: 10.1016/j.electacta.2015.02.166 [26] TAN L J, LIU Y M, ZHU G W, et al. Metal-free electro-Fenton degradation of perfluorooctanoic acid with efficient ordered mesoporous carbon catalyst[J]. Science of the Total Environment, 2023, 875: 162725. doi: 10.1016/j.scitotenv.2023.162725 [27] 赵晗露. 电化学原位产过氧化氢耦合紫外系统降解罗丹明B[D]. 威海: 哈尔滨工业大学 (威海校区) , 2021. [28] BERENGUER R, NISHIHARA H, ITOI H, et al. Electrochemical generation of oxygen-containing groups in an ordered microporous zeolite-templated carbon[J]. Carbon, 2013, 54: 94-104. doi: 10.1016/j.carbon.2012.11.007 [29] 朱询. 基于活性材料/rGO水凝胶粒子电极的三维电催化法处理模拟印染废水的研究[D]. 北京: 北京化工大学, 2021. [30] PANIZZA M. , CERISOLA G. Electro-Fenton degradation of synthetic dyes[J]. Water Research, 2009, 43(2): 339-344. doi: 10.1016/j.watres.2008.10.028 [31] 张妮, 任松宇, 张燕羽, 等. 缓释铁源耦合气体扩散电极强化电芬顿降解环丙沙星[J]. 环境工程学报, 2022, 16(11): 3596-3605. doi: 10.12030/j.cjee.202208056 [32] ZHOU M H, YU Q H, LEI L C, et al. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system[J]. Separation and Purification Technology, 2007, 57(2): 380-387. doi: 10.1016/j.seppur.2007.04.021 [33] YANG D S, BHATTACHARJYA D, INAMDAR S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. Journal of the American Chemical Society, 2012, 134(39): 16127-16130. doi: 10.1021/ja306376s [34] IMRAN M, PRAKASH O, PUSHKAR P, et al. Performance enhancement of benthic microbial fuel cell by cerium coated electrodes[J]. Electrochimica Acta, 2019, 295: 58-66. doi: 10.1016/j.electacta.2018.08.158 [35] 王志彬, 董勇修, 刘显贞, 等. 聚四氟乙烯微粉表面改性对氢化丁腈橡胶性能影响[J]. 高分子材料科学与工程, 2023, 39(1): 70-74. doi: 10.16865/j.cnki.1000-7555.2023.0014 [36] CORDEIRO P J M, JIMENEZ C S, LANZA M R D, et al. Electrochemical production of extremely high concentrations of hydrogen peroxide in discontinuous processes[J]. Separation and Purification Technology, 2022, 300: 121847. doi: 10.1016/j.seppur.2022.121847 [37] SUN F, YANG C W, QU Z B, et al. Inexpensive activated coke electrocatalyst for high-efficiency hydrogen peroxide production: Coupling effects of amorphous carbon cluster and oxygen dopant[J]. Applied Catalysis B: Environmental, 2021, 286: 119860. doi: 10.1016/j.apcatb.2020.119860 [38] LIU N, XIE H D, WEI J, et al. Catalytic activity of a composite metal electrode catalyst for the degradation of real dyeing wastewater by a heterogeneous electro-Fenton process[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102930. doi: 10.1016/j.jece.2019.102930