四溴双酚A对人体正常肝细胞毒性效应及作用机制

王晓丽, 张运超, 夏沪彬, 陈超, 刘勇弟. 四溴双酚A对人体正常肝细胞毒性效应及作用机制[J]. 生态毒理学报, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001
引用本文: 王晓丽, 张运超, 夏沪彬, 陈超, 刘勇弟. 四溴双酚A对人体正常肝细胞毒性效应及作用机制[J]. 生态毒理学报, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001
Wang Xiaoli, Zhang Yunchao, Xia Hubin, Chen Chao, Liu Yongdi. Toxic Effects and Mechanism of Tetrabromobisphenol A on Human Normal Liver Cells L02[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001
Citation: Wang Xiaoli, Zhang Yunchao, Xia Hubin, Chen Chao, Liu Yongdi. Toxic Effects and Mechanism of Tetrabromobisphenol A on Human Normal Liver Cells L02[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001

四溴双酚A对人体正常肝细胞毒性效应及作用机制

    作者简介: 王晓丽(1980-),女,助理研究员,研究方向为环境毒理学,E-mail:xlwang@ecust.edu.cn
    通讯作者: 刘勇弟, E-mail: ydliu@ecust.edu.cn
  • 基金项目:

    国家重点研发计划资助项目(2016YFC0206200);中国环境科学研究院环境基准与风险评估国家重点实验室开放基金(SKLECRA2016OFP19);国家自然科学基金资助项目(41877377,51578240);上海市学术/技术研究带头人项目(18XD1424100)

  • 中图分类号: X171.5

Toxic Effects and Mechanism of Tetrabromobisphenol A on Human Normal Liver Cells L02

    Corresponding author: Liu Yongdi, ydliu@ecust.edu.cn
  • Fund Project:
  • 摘要: 四溴双酚A(TBBPA)作为目前用量最大的一种溴系阻燃剂,在含TBBPA用品的生产、使用和废弃处置过程中,能够通过多种途径进入环境介质,造成持久性污染,危害生态系统和人体健康。为探明TBBPA对人体健康的潜在毒性效应及作用机制,选取人体正常肝细胞L02作为模型,通过分析暴露后细胞形态、存活率、胞内活性氧(ROS)含量、DNA损伤及细胞凋亡等变化。结果表明,TBBPA暴露导致L02细胞形态发生明显改变、存活率显著降低,细胞彗星实验拖尾现象明显增强;随着暴露浓度的升高,L02细胞胞内ROS含量、丙二醛(MDA)含量和氧化型谷胱甘肽/还原型谷胱甘肽(GSSG/GSH)比值均呈现剂量依赖性增加。40 μmol·L-1暴露条件下胞内ROS含量升高3.1倍;20 μmol·L-1和40 μmol·L-1暴露条件下,细胞凋亡率分别增加了3.2倍和4.8倍。推测TBBPA暴露对L02细胞的毒性效应作用机制为,暴露引起细胞氧化应激水平升高,ROS升高再引起DNA损伤程度增强,最终导致细胞凋亡率增加。上述研究结果将为评估TBBPA的毒性效应和健康风险提供科学依据。
  • 加载中
  • Covaci A, Voorspoels S, Abdallah M A, et al. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives[J]. Journal of Chromatography A, 2009, 1216(3):346-363
    Yu C H, Hu B. Novel combined stir bar sorptive extraction coupled with ultrasonic assisted extraction for the determination of brominated flame retardants in environmental samples using high performance liquid chromatography[J]. Journal of Chromatography A, 2007, 1160(1-2):71-80
    彭浩, 金军, 王英, 等. 液相色谱-电喷雾离子阱质谱分析土壤中四溴双酚-A[J]. 分析化学, 2007, 35(4):549-551

    Peng H, Jin J, Wang Y, et al. Determination of tetrabromobisphenol-A in soil by high performance liquid chromatography-electrospray ion trap mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2007, 35(4):549-551(in Chinese)

    Öberg K, Warman K, Öberg T. Distribution and levels of brominated flame retardants in sewage sludge[J]. Chemosphere, 2002, 48(8):805-809
    Liu K, Li J, Yan S J, et al. A review of status of tetrabromobisphenol A (TBBPA) in China[J]. Chemosphere, 2016, 148:8-20
    Watanabe I, Kashimoto T, Tatsukawa R. Identification of the flame retardant tetrabromobisphenol-A in the river sediment and the mussel collected in Osaka[J]. Bulletin of Environmental Contamination and Toxicology, 1983, 31(1):48-52
    Chu S G, Haffner G D, Letcher R J. Simultaneous determination of tetrabromobisphenol A, tetrachlorobisphenol A, bisphenol A and other halogenated analogues in sediment and sludge by high performance liquid chromatography-electrospray tandem mass spectrometry[J]. Journal of Chromatography A, 2005, 1097(1-2):25-32
    Saint-Louis R, Pelletier E. LC-ESI-MS-MS method for the analysis of tetrabromobisphenol A in sediment and sewage sludge[J]. The Analyst, 2004, 129(8):724-730
    Zhang X L, Luo X J, Chen S J, et al. Spatial distribution and vertical profile of polybrominated diphenyl ethers, tetrabromobisphenol A, and decabromodiphenylethane in river sediment from an industrialized region of South China[J]. Environmental Pollution, 2009, 157(6):1917-1923
    Takigami H, Suzuki G, Hirai Y, et al. Brominated flame retardants and other polyhalogenated compounds in indoor air and dust from two houses in Japan[J]. Chemosphere, 2009, 76(2):270-277
    Herzke D, Berger U, Kallenborn R, et al. Brominated flame retardants and other organobromines in Norwegian predatory bird eggs[J]. Chemosphere, 2005, 61(3):441-449
    Law R J, Bersuder P, Barry J, et al. A significant downturn in levels of hexabromocyclododecane in the blubber of harbor porpoises (Phocoena phocoena) stranded or bycaught in the UK:An update to 2006[J]. Environmental Science & Technology, 2008, 42(24):9104-9109
    Shi Z X, Wu Y N, Li J G, et al. Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes:Occurrence measurements in foods and human milk[J]. Environmental Science & Technology, 2009, 43(12):4314-4319
    Kitamura S, Kato T, Iida M, et al. Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds:Affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis[J]. Life Sciences, 2005, 76(14):1589-1601
    Lilienthal H, Verwer C M, van der Ven L T, et al. Exposure to tetrabromobisphenol A (TBBPA) in Wistar rats:Neurobehavioral effects in offspring from a one-generation reproduction study[J]. Toxicology, 2008, 246(1):45-54
    Kuiper R V, Brandhof E J, Leonards P E G, et al. Toxicity of tetrabromobisphenol A (TBBPA) in zebrafish (Danio rerio) in a partial life-cycle test[J]. Archives of Toxicology, 2007, 81(1):1-9
    姚志刚, 赵凤娟. 遗传学[M]. 2版. 北京:化学工业出版社, 2015:182-186
    Tada Y, Fujitani T, Ogata A, et al. Flame retardant tetrabromobisphenol A induced hepatic changes in ICR male mice[J]. Environmental Toxicology and Pharmacology, 2007, 23(2):174-178
    Nakagawa Y, Suzuki T, Ishii H, et al. Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes[J]. Xenobiotica, 2007, 37(7):693-708
    Lenart J, Zieminska E, Diamandakis D, et al. Altered expression of genes involved in programmed cell death in primary cultured rat cerebellar granule cells acutely challenged with tetrabromobisphenol A[J]. Neurotoxicology, 2017, 63:126-136
    Suh K S, Choi E M, Rhee S Y, et al. Tetrabromobisphenol A induces cellular damages in pancreatic β-cells in vitro[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(7):624-631
    Grasselli E, Cortese K, Fabbri R, et al. Thyromimetic actions of tetrabromobisphenol A (TBBPA) in steatotic FaO rat hepatoma cells[J]. Chemosphere, 2014, 112:511-518
    Wikoff D S, Birnbaum L. Human Health Effects of Brominated Flame Retardants[M]//Handbook of Environmental Chemistry. Springer, 2011:19-53
    向明灯, 李良忠, 玉琳, 等. 四溴双酚A对HepG2细胞线粒体膜电位及凋亡的影响[J]. 环境卫生学杂志, 2015, 5(1):6-9

    ,13 Xiang M D, Li L Z, Yu L, et al. Effect of tetrabromobisphenol A on mitochondrial membrane potential and apoptosis of HepG2 cells[J]. Journal of Environmental Hygiene, 2015, 5(1):6-9,13(in Chinese)

    张蔓, 郑敏, 吴智君, 等. 二甲基甲酰胺对大鼠肝脏抗氧化能力及PPAR mRNA的影响[J]. 卫生研究, 2018, 47(3):352-357

    Zhang M, Zheng M, Wu Z J, et al. Effects of N, N-dimethylformamide on hepatic antioxidant capacity and liver PPARs mRNA levels in rats[J]. Journal of Hygiene Research, 2018, 47(3):352-357(in Chinese)

    Chen H M, Tang X X, Zhou B, et al. Mechanism of Deca-BDE-induced apoptosis in Neuro-2a cells:Role of death-receptor pathway and reactive oxygen species-mediated mitochondrial pathway[J]. Journal of Environmental Sciences, 2016, 46:241-251
    Chang C Y, Shen C Y, Kang C K, et al. Taurine protects HK-2 cells from oxidized LDL-induced cytotoxicity via the ROS-mediated mitochondrial and p53-related apoptotic pathways[J]. Toxicology and Applied Pharmacology, 2014, 279(3):351-363
    Pearson G A, MacKenzie I Z. Factors that influence the incision-delivery interval at caesarean section and the impact on the neonate:A prospective cohort study[J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 2013, 169(2):197-201
    Rodríguez-González J, Wilkins-Rodríguez A A, Gutiérrez-Kobeh L. Role of glutathione, ROS, and Bcl-xL in the inhibition of apoptosis of monocyte-derived dendritic cells by Leishmania mexicana promastigotes[J]. Parasitology Research, 2018, 117(4):1225-1235
    Circu M L, Aw T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology & Medicine, 2010, 48(6):749-762
    Evans J L, Goldfine I D, Maddux B A, et al. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?[J]. Diabetes, 2003, 52(1):1-8
    Zhao F, Wang J, Fang Y J, et al. Effects of tris(1,3-dichloro-2-propyl)phosphate on pathomorphology and gene/protein expression related to thyroid disruption in rats[J]. Toxicology Research, 2016, 5(3):921-930
  • 加载中
计量
  • 文章访问数:  3397
  • HTML全文浏览数:  3397
  • PDF下载数:  83
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-03-10
王晓丽, 张运超, 夏沪彬, 陈超, 刘勇弟. 四溴双酚A对人体正常肝细胞毒性效应及作用机制[J]. 生态毒理学报, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001
引用本文: 王晓丽, 张运超, 夏沪彬, 陈超, 刘勇弟. 四溴双酚A对人体正常肝细胞毒性效应及作用机制[J]. 生态毒理学报, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001
Wang Xiaoli, Zhang Yunchao, Xia Hubin, Chen Chao, Liu Yongdi. Toxic Effects and Mechanism of Tetrabromobisphenol A on Human Normal Liver Cells L02[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001
Citation: Wang Xiaoli, Zhang Yunchao, Xia Hubin, Chen Chao, Liu Yongdi. Toxic Effects and Mechanism of Tetrabromobisphenol A on Human Normal Liver Cells L02[J]. Asian Journal of Ecotoxicology, 2021, 16(2): 245-253. doi: 10.7524/AJE.1673-5897.20190310001

四溴双酚A对人体正常肝细胞毒性效应及作用机制

    通讯作者: 刘勇弟, E-mail: ydliu@ecust.edu.cn
    作者简介: 王晓丽(1980-),女,助理研究员,研究方向为环境毒理学,E-mail:xlwang@ecust.edu.cn
  • 1. 华东理工大学资源与环境工程学院, 上海 200237;
  • 2. 华东理工大学生物工程学院, 上海 200237
基金项目:

国家重点研发计划资助项目(2016YFC0206200);中国环境科学研究院环境基准与风险评估国家重点实验室开放基金(SKLECRA2016OFP19);国家自然科学基金资助项目(41877377,51578240);上海市学术/技术研究带头人项目(18XD1424100)

摘要: 四溴双酚A(TBBPA)作为目前用量最大的一种溴系阻燃剂,在含TBBPA用品的生产、使用和废弃处置过程中,能够通过多种途径进入环境介质,造成持久性污染,危害生态系统和人体健康。为探明TBBPA对人体健康的潜在毒性效应及作用机制,选取人体正常肝细胞L02作为模型,通过分析暴露后细胞形态、存活率、胞内活性氧(ROS)含量、DNA损伤及细胞凋亡等变化。结果表明,TBBPA暴露导致L02细胞形态发生明显改变、存活率显著降低,细胞彗星实验拖尾现象明显增强;随着暴露浓度的升高,L02细胞胞内ROS含量、丙二醛(MDA)含量和氧化型谷胱甘肽/还原型谷胱甘肽(GSSG/GSH)比值均呈现剂量依赖性增加。40 μmol·L-1暴露条件下胞内ROS含量升高3.1倍;20 μmol·L-1和40 μmol·L-1暴露条件下,细胞凋亡率分别增加了3.2倍和4.8倍。推测TBBPA暴露对L02细胞的毒性效应作用机制为,暴露引起细胞氧化应激水平升高,ROS升高再引起DNA损伤程度增强,最终导致细胞凋亡率增加。上述研究结果将为评估TBBPA的毒性效应和健康风险提供科学依据。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回