环境污染物与肠道菌群互作关系的研究进展

冯宇希, 冯乃宪, 陈昕, 王一泽, 郭静婕, 莫测辉. 环境污染物与肠道菌群互作关系的研究进展[J]. 生态毒理学报, 2020, 15(4): 99-111. doi: 10.7524/AJE.1673-5897.20190622001
引用本文: 冯宇希, 冯乃宪, 陈昕, 王一泽, 郭静婕, 莫测辉. 环境污染物与肠道菌群互作关系的研究进展[J]. 生态毒理学报, 2020, 15(4): 99-111. doi: 10.7524/AJE.1673-5897.20190622001
Feng Yuxi, Feng Naixian, Chen Xin, Wang Yize, Guo Jingjie, Mo Cehui. Interaction between Environmental Pollutants and Gut Microbiota: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 99-111. doi: 10.7524/AJE.1673-5897.20190622001
Citation: Feng Yuxi, Feng Naixian, Chen Xin, Wang Yize, Guo Jingjie, Mo Cehui. Interaction between Environmental Pollutants and Gut Microbiota: A Review[J]. Asian Journal of Ecotoxicology, 2020, 15(4): 99-111. doi: 10.7524/AJE.1673-5897.20190622001

环境污染物与肠道菌群互作关系的研究进展

    作者简介: 冯宇希(1990-),男,博士,研究方向为环境毒理学,E-mail:yu-xifeng@foxmail.com
    通讯作者: 莫测辉, E-mail: tchmo@jnu.edu.cn
  • 基金项目:

    广东省应用型科技研发专项资金资助项目(2016B020242005)

  • 中图分类号: X171.5

Interaction between Environmental Pollutants and Gut Microbiota: A Review

    Corresponding author: Mo Cehui, tchmo@jnu.edu.cn
  • Fund Project:
  • 摘要: 随着城市化和工业化的快速发展,大量污染物进入到环境中,这些污染物在食物链中传递和放大,最终对人体健康产生危害。环境污染物通过摄食进入消化道,影响肠道微生物稳态,进而危害宿主健康。目前大部分研究主要集中在环境污染物对肠道微生物的丰富度和多样性的影响,而对环境污染物、肠道微生物和宿主健康互作关系的研究鲜有报道。本文综述了环境污染物包括重金属、持久性有机污染物、农药、微塑料、抗生素及其抗性基因等对肠道微生物菌群结构及其代谢活动的影响,阐明了环境污染物诱导肠道菌群失衡而致病的关键步骤,为肠道微生物毒理学评价提供新的研究思路。
  • 加载中
  • Whitman W B, Coleman D C, Wiebe W J. Prokaryotes:The unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12):6578-6583
    Roca-Saavedra P, Mendez-Vilabrille V, Miranda J M, et al. Food additives, contaminants and other minor components:Effects on human gut microbiota-A review[J]. Journal of Physiology and Biochemistry, 2018, 74(1):69-83
    Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59
    Yatsunenko T, Rey F E, Manary M J, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402):222
    Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728):1635-1638
    Ouwehand A, Vesterlund S. Health aspects of probiotics[J]. IDrugs The Investigational Drugs Journal, 2003, 6(6):573-580
    Aron-Wisnewsky J, Doré J, Clement K. The importance of the gut microbiota after bariatric surgery[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9(10):590
    Goodrich J K, Waters J L, Poole A C, et al. Human genetics shape the gut microbiome[J]. Cell, 2014, 159(4):789-799
    Zuo T, Kamm M A, Colombel J F, et al. Urbanization and the gut microbiota in health and inflammatory bowel disease[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15:440-452
    Frazier T H, DiBaise J K, McClain C J. Gut microbiota, intestinal permeability, obesity-induced inflammation, and liver injury[J]. Journal of Parenteral and Enteral Nutrition, 2011, 35(5_suppl):14S-20S
    Chen L, Hu C, Lai N L S, et al. Acute exposure to PBDEs at an environmentally realistic concentration causes abrupt changes in the gut microbiota and host health of zebrafish[J]. Environmental Pollution, 2018, 240:17-26
    Jakobsson H E, Rodríguez-Piñeiro A M, Schütte A, et al. The composition of the gut microbiota shapes the colon mucus barrier[J]. EMBO Reports, 2015, 16(2):164-177
    Sánchez B, Delgado S, Blanco-Míguez A, et al. Probiotics, gut microbiota, and their influence on host health and disease[J]. Molecular Nutrition & Food Research, 2017, 61(1):1600240
    Sekirov I, Russell S L, Antunes L C M, et al. Gut microbiota in health and disease[J]. Physiological Reviews, 2010, 90(3):859-904
    王全楚, 步子恒, 李青上. 肠肝轴的现代概念及其在肝脏疾病中的作用[J]. 胃肠病学和肝病学杂志, 2015, 24(9):1155-1158

    Wang Q C, Bu Z H, Li Q S. The current role of gut-liver axis in liver diseases[J]. Chinese Journal of Gastroenterology & Hepatology, 2015, 24(9):1155-1158(in Chinese)

    Jin Y, Wu S, Zeng Z, et al. Effects of environmental pollutants on gut microbiota[J]. Environmental Pollution, 2017, 222:1-9
    Gasmi T, Khouni I, Ghrabi A. Assessment of heavy metals pollution using multivariate statistical analysis methods in Wadi El Bey (Tunisia)[J]. Desalination and Water Treatment, 2016, 57(46):22152-22165
    Nordberg G F, Fowler B A, Nordberg M. Handbook on the Toxicology of Metals[M]. ScienceDirect, 2014:265-267
    Richardson J B, Dancy B C, Horton C L, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota[J]. Scientific Reports, 2018, 8(1):6578
    Liu Y, Li Y, Liu K, et al. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract[J]. PloS One, 2014, 9(2):e85323
    Zhang W, Guo R, Yang Y, et al. Long-term effect of heavy-metal pollution on diversity of gastrointestinal microbial community of Bufo raddei[J]. Toxicology Letters, 2016, 258:192-197
    Zhai Q, Li T, Yu L, et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice[J]. Science Bulletin, 2017, 62(12):831-840
    Yang H, Wang J, Lv Z, et al. Metatranscriptome analysis of the intestinal microorganisms in Pardosa pseudoannulata in response to cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 159:1-9
    Jafarpour D, Shekarforoush S S, Ghaisari H R, et al. Impact of synbiotic diets including inulin, Bacillus coagulans and Lactobacillus plantarum on intestinal microbiota of rat exposed to cadmium and mercury[J]. Veterinary Science Development, 2015, 5(2):6061
    Kim M, Qie Y, Park J, et al. Gut microbial metabolites fuel host antibody responses[J]. Cell Host & Microbe, 2016, 20(2):202-214
    Breton J, Daniel C, Dewulf J, et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure[J]. Toxicology Letters, 2013, 222(2):132-138
    Ilett K F, Tee L B, Reeves P T, et al. Mebolism of drugs and other xenobiotics in the gut lumen and wall[J]. Pharmacology & Therapeutics, 1990, 46(1):67-93
    Kashyap P C, Marcobal A, Ursell L K, et al. Complex interactions among diet, gastrointestinal transit, and gut microbiota in humanized mice[J]. Gastroenterology, 2013, 144(5):967-977
    Dong X, Shulzhenko N, Lemaitre J, et al. Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh[J]. PloS One, 2017, 12(12):e0188487
    Lu K, Abo R P, Schlieper K A, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice:An integrated metagenomics and metabolomics analysis[J]. Environmental Health Perspectives, 2014, 122(3):284-291
    Guo X, Liu S, Wang Z, et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron[J]. Chemosphere, 2014, 112:1-8
    Yu H, Wu B, Zhang X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota[J]. Environmental Science & Technology, 2016, 50(13):7189-7197
    Chi L, Bian X, Gao B, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome[J]. Toxicological Sciences, 2017, 160(2):193-204
    Singh P, Chowdhuri D K. Environmental presence of hexavalent but not trivalent chromium causes neurotoxicity in exposed Drosophila melanogaster[J]. Molecular Neurobiology, 2017, 54(5):3368-3387
    Ivankovic S, Preussmann R. Absence of toxic and carcinogenic effects after administration of high doses of chromic oxide pigment in subacute and long-term feeding experiments in rats[J]. Food and Cosmetics Toxicology, 1975, 13(3):347-351
    Upreti R, Shrivastava R, Chaturvedi U. Gut microflora & toxic metals:Chromium as a model[J]. Indian Journal of Medical Research, 2004, 119:49-59
    Wu G, Xiao X, Feng P, et al. Gut remediation:A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1[J]. Scientific Reports, 2017, 7(1):15000
    Beier E E, Holz J D, Sheu T J, et al. Elevated lifetime lead exposure impedes osteoclast activity and produces an increase in bone mass in adolescent mice[J]. Toxicological Sciences, 2015, 149(2):277-288
    Xia J, Lu L, Jin C, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209:1-8
    Gao B, Chi L, Mahbub R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways[J]. Chemical Research in Toxicology, 2017, 30(4):996-1005
    Younan S, Sakita G Z, Albuquerque T R, et al. Chromium(Ⅵ) bioremediation by probiotics[J]. Journal of the Science of Food and Agriculture, 2016, 96(12):3977-3982
    Potera C. POPs and gut microbiota:Dietary exposure alters ratio of bacterial species[J]. Environmental Health Perspectives, 2015, 123(7):A187
    Stegeman J J, Lech J J. Cytochrome P-450 monooxygenase systems in aquatic species:Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure[J]. Environmental Health Perspectives, 1991, 90:101-109
    Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites[J]. Environmental Health Perspectives, 2004, 113(1):6-10
    Bagi A, Riiser E S, Molland H S, et al. Gastrointestinal microbial community changes in Atlantic cod (Gadus morhua) exposed to crude oil[J]. BMC Microbiology, 2018, 18(1):25
    Ribière C, Peyret P, Parisot N, et al. Oral exposure to environmental pollutant benzo[a] pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model[J]. Scientific Reports, 2016, 6:31027
    Defois C, Ratel J, Denis S, et al. Environmental pollutant benzo[a] pyrene impacts the volatile metabolome and transcriptome of the human gut microbiota[J]. Frontiers in Microbiology, 2017, 8:1562
    Zhang L, Nichols R G, Correll J, et al. Persistent organic pollutants modify gut microbiota-host metabolic homeostasis in mice through aryl hydrocarbon receptor activation[J]. Environmental Health Perspectives, 2015, 123(7):679-688
    Chi Y, Lin Y, Zhu H, et al. PCBs-high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice[J]. Environmental Pollution, 2018, 239:332-341
    Chen L, Zhang W, Hua J, et al. Dysregulation of intestinal health by environmental pollutants:Involvement of the estrogen receptor and aryl hydrocarbon receptor[J]. Environmental Science & Technology, 2018, 52(4):2323-2330
    Nicholson J K, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086):1262-1267
    Gao B, Bian X, Mahbub R, et al. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions[J]. Environmental Health Perspectives, 2016, 125(2):198-206
    Lozano V L, Defarge N, Rocque L M, et al. Sex-dependent impact of Roundup on the rat gut microbiome[J]. Toxicology Reports, 2018, 5:96-107
    Neuman H, Debelius J W, Knight R, et al. Microbial endocrinology:The interplay between the microbiota and the endocrine system[J]. FEMS Microbiology Reviews, 2015, 39(4):509-521
    Lakritz J R, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis[J]. Oncotarget, 2015, 6(11):9387
    Erdman S E, Poutahidis T. Gut bacteria and cancer[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2015, 1856(1):86-90
    Motta E V S, Raymann K, Moran N A. Glyphosate perturbs the gut microbiota of honey bees[J]. Proceedings of the National Academy of Sciences, 2018, 115(41):10305-10310
    Condette C J, Khorsi-Cauet H, Morlière P, et al. Increased gut permeability and bacterial translocation after chronic chlorpyrifos exposure in rats[J]. PLoS One, 2014, 9(7):e102217
    Liu Q, Shao W, Zhang C, et al. Organochloride pesticides modulated gut microbiota and influenced bile acid metabolism in mice[J]. Environmental Pollution, 2017, 226:268-276
    Lukowicz C, Ellero-Simatos S, Régnier M, et al. Metabolic effects of a chronic dietary exposure to a low-dose pesticide cocktail in mice:Sexual dimorphism and role of the constitutive androstane receptor[J]. Environmental Health Perspectives, 2018, 126(6):067007
    Brandt K K, Amézquita A, Backhaus T, et al. Ecotoxicological assessment of antibiotics:A call for improved consideration of microorganisms[J]. Environment International, 2015, 85:189-205
    Wiström J, Norrby S R, Myhre E B, et al. Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients:A prospective study[J]. Journal of Antimicrobial Chemotherapy, 2001, 47(1):43-50
    Roca-Saavedra P, Rodriguez J A, Lamas A, et al. Low-dosage antibiotic intake can disturb gut microbiota in mice[J]. CyTA-Journal of Food, 2018, 16(1):672-678
    Yin J, Zhang X X, Wu B, et al. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut[J]. Ecotoxicology, 2015, 24(10):2125-2132
    Panda S, Casellas F, Vivancos J L, et al. Short-term effect of antibiotics on human gut microbiota[J]. PloS One, 2014, 9(4):e95476
    Schokker D, Zhang J, Vastenhouw S A, et al. Long-lasting effects of early-life antibiotic treatment and routine animal handling on gut microbiota composition and immune system in pigs[J]. PLoS One, 2015, 10(2):e0116523
    Behr C, Ramírez-Hincapié S, Cameron H, et al. Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces[J]. Toxicology Letters, 2018, 296:139-151
    Miller S, Wu R, Oremus M. The association between antibiotic use in infancy and childhood overweight or obesity:A systematic review and meta-analysis[J]. Obesity Reviews, 2018, 19(11):1463-1475
    Loewen K, Monchka B, Mahmud S M, et al. Prenatal antibiotic exposure and childhood asthma:A population-based study[J]. European Respiratory Journal, 2018, 52(1):1702070
    Gao K, Pi Y, Mu C L, et al. Antibiotics-induced modulation of large intestinal microbiota altered aromatic amino acid profile and expression of neurotransmitters in the hypothalamus of piglets[J]. Journal of Neurochemistry, 2018, 146(3):219-234
    Neuman H, Forsythe P, Uzan A, et al. Antibiotics in early life:Dysbiosis and the damage done[J]. FEMS Microbiology Reviews, 2018, 42(4):489-499
    Mitre E, Susi A, Kropp L E, et al. Association between use of acid-suppressive medications and antibiotics during infancy and allergic diseases in early childhood[J]. JAMA Pediatrics, 2018, 172(6):e180315
    Hu Y, Yang X, Qin J, et al. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota[J]. Nature Communications, 2013, 4:2151
    Feng J, Li B, Jiang X, et al. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses[J]. Environmental Microbiology, 2018, 20(1):355-368
    Zhu D, An X L, Chen Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil Collembolan[J]. Environmental Science & Technology, 2018, 52(5):3081-3090
    Xiong W, Wang Y, Sun Y, et al. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes[J]. Microbiome, 2018, 6(1):34
    Jakobsson H E, Jernberg C, Andersson A F, et al. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome[J]. PloS One, 2010, 5(3):e9836
    Law K L, Thompson R C. Microplastics in the seas[J]. Science, 2014, 345(6193):144-145
    Rillig M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12):6453-6454
    Pedã C, Caccamo L, Fossi M C, et al. Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256
    Cao D, Wang X, Luo X, et al. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil[C]. Bangkok, Thailand:IOP Conference Series:Earth and Environmental Science, 2017
    Horton A A, Walton A, Spurgeon D J, et al. Microplastics in freshwater and terrestrial environments:Evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Science of the Total Environment, 2017, 586:127-141
    Zhu B K, Fang Y M, Zhu D, et al. Exposure to nanoplastics disturbs the gut microbiome in the soil Oligochaete Enchytraeus crypticus[J]. Environmental Pollution, 2018, 239:408-415
    Mendoza L M R, Jones P R. Characterisation of microplastics and toxic chemicals extracted from microplastic samples from the North Pacific Gyre[J]. Environmental Chemistry, 2015, 12(5):611-617
    Rochman C M, Hentschel B T, Teh S J. Long-term sorption of metals is similar among plastic types:Implications for plastic debris in aquatic environments[J]. PloS One, 2014, 9(1):e85433
    Lu L, Wan Z, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice[J]. Science of the Total Environment, 2018, 631:449-458
    Jin Y, Lu L, Tu W, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice[J]. Science of the Total Environment, 2019, 649:308-317
    王泓鸥, 董四君. 肠道微生物受环境污染的影响及其对宿主疾病的调控作用[J]. 生态毒理学报, 2017, 12(3):110-119

    Wang H O, Dong S J. Influences of the environment pollution on the intestinal microbiota and its regulations on host diseases[J]. Asian Journal of Ecotoxicology, 2017, 12(3):110-119(in Chinese)

    Spanogiannopoulos P, Turnbaugh P J. Broad collateral damage of drugs against the gut microbiome[J]. Nature Reviews Gastroenterology & Hepatology, 2018, 15(8):457-458
    Kéfi S, Domínguez-García V, Donohue I, et al. Advancing our understanding of ecological stability[J]. Ecology Letters, 2019, 22(9):1349-1356
    金泰廙. 毒理学原理和方法[M]. 上海:复旦大学出版社, 2012:130-139
    Sommer F, Anderson J M, Bharti R, et al. The resilience of the intestinal microbiota influences health and disease[J]. Nature Reviews Microbiology, 2017, 15(10):630
    MacPherson C W, Mathieu O, Tremblay J, et al. Gut bacterial microbiota and its resistome rapidly recover to basal state levels after short-term amoxicillin-clavulanic acid treatment in healthy adults[J]. Scientific Reports, 2018, 8(1):11192
    Kim S W, Chae Y, Kwak J I, et al. Viability of gut microbes as a complementary earthworm biomarker of metal exposure[J]. Ecological Indicators, 2016, 60:377-384
  • 加载中
计量
  • 文章访问数:  3524
  • HTML全文浏览数:  3524
  • PDF下载数:  135
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-06-22

环境污染物与肠道菌群互作关系的研究进展

    通讯作者: 莫测辉, E-mail: tchmo@jnu.edu.cn
    作者简介: 冯宇希(1990-),男,博士,研究方向为环境毒理学,E-mail:yu-xifeng@foxmail.com
  • 暨南大学生命科学与技术学院, 广州 510632
基金项目:

广东省应用型科技研发专项资金资助项目(2016B020242005)

摘要: 随着城市化和工业化的快速发展,大量污染物进入到环境中,这些污染物在食物链中传递和放大,最终对人体健康产生危害。环境污染物通过摄食进入消化道,影响肠道微生物稳态,进而危害宿主健康。目前大部分研究主要集中在环境污染物对肠道微生物的丰富度和多样性的影响,而对环境污染物、肠道微生物和宿主健康互作关系的研究鲜有报道。本文综述了环境污染物包括重金属、持久性有机污染物、农药、微塑料、抗生素及其抗性基因等对肠道微生物菌群结构及其代谢活动的影响,阐明了环境污染物诱导肠道菌群失衡而致病的关键步骤,为肠道微生物毒理学评价提供新的研究思路。

English Abstract

参考文献 (94)

目录

/

返回文章
返回