重庆长江流域水体中8种典型环境雌激素污染特征

卓丽, 许榕发, 石运刚, 严骁, 庄僖, 胡凤琦, 刘强, 黄道建. 重庆长江流域水体中8种典型环境雌激素污染特征[J]. 生态毒理学报, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001
引用本文: 卓丽, 许榕发, 石运刚, 严骁, 庄僖, 胡凤琦, 刘强, 黄道建. 重庆长江流域水体中8种典型环境雌激素污染特征[J]. 生态毒理学报, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001
Zhuo Li, Xu Rongfa, Shi Yungang, Yan Xiao, Zhuang Xi, Hu Fengqi, Liu Qiang, Huang Daojian. Estrogens in Surface Water of the Yangtze River in Chongqing Section[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001
Citation: Zhuo Li, Xu Rongfa, Shi Yungang, Yan Xiao, Zhuang Xi, Hu Fengqi, Liu Qiang, Huang Daojian. Estrogens in Surface Water of the Yangtze River in Chongqing Section[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001

重庆长江流域水体中8种典型环境雌激素污染特征

    作者简介: 卓丽(1984-),女,硕士,研究方向为化学品管理与风险防控,E-mail:zhuoli729@163.com
  • 基金项目:

    重庆市生态环境局科研项目"长江干流重庆段环境激素化学品源解析与环境风险评估"(CQGGZX2019008)

  • 中图分类号: X171.5

Estrogens in Surface Water of the Yangtze River in Chongqing Section

  • Fund Project:
  • 摘要: 选择重庆市长江流域为研究区域,调查平水期和蓄水期水体中8种典型环境雌激素雌酮(E1)、雌二醇(E2)、雌三醇(E3)、已烯雌酚(DES)、炔雌醇(EE2)、4-壬基酚(4-NP)、4-辛基酚(4-t-OP)和双酚A(BPA)的浓度、组成和分布特征,并对其雌激素活性进行风险评价。结果表明,重庆市长江流域水体中除E2外,其余7种环境雌激素均有检出,总浓度范围为46.16~10 985.79 ng·L-1,主要污染物为4-NP和BPA。平水期4-t-OP、BPA浓度显著高于蓄水期,而4-NP则相反。空间分布上,各采样位点的环境雌激素污染状况相差较大,并未表现出明显的流向变化趋势或干支流差异。风险评估结果表明,平水期52%的位点及蓄水期22%的位点雌激素总活性高于1 ng·L-1,提示具有高雌激素活性风险,其中,E1为平水期主要雌激素活性贡献物质,而4-NP为蓄水期主要雌激素活性贡献物质。
  • 加载中
  • Hanselman T A, Graetz D A, Wilkie A C, et al. Determination of steroidal estrogens in flushed dairy manure wastewater by gas chromatography-mass spectrometry[J]. Journal of Environmental Quality, 2006, 35:695-700
    Ying G G, Kookana R S, Kumar A. Fate of estrogens and xenoestrogens in four sewage treatment plants with different technologies[J]. Environmental Toxicology and Chemistry, 2008, 27:87-94
    Esteban S, Gorga M, Petrovic M, et al. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of central Spain[J]. Science of the Total Environment, 2013, 466-467:939-951
    Poon S, Koren G, Carnevale A, et al. Association of in utero exposure to polybrominated diphenyl ethers with the risk of hypospadias[J]. JAMA Pediatrics, 2018, 172:851-856
    Goodyer C G, Poon S, Aleksa K, et al. A Case-Control study of maternal polybrominated diphenyl ether (PBDE) exposure and cryptorchidism in Canadian populations[J]. Environmental Health Perspectives, 2017, 125(5):057004
    Swan S H, Elkin E P, Fenster L. The question of declining sperm density revisited:An analysis of 101 studies published 1934-1996[J]. Environmental Health Perspectives, 2000, 108:961-966
    Wang L, Ying G G, Zhao J L, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools[J]. Environmental Pollution, 2011, 159(1):148-156
    Guiguen Y, Fostier A, Piferrer F, et al. Ovarian aromatase and estrogens:A pivotal role for gonadal sex differentiation and sex change in fish[J]. General and Comparative Endocrinology, 2010, 165:352-366
    樊静静, 王赛, 唐金鹏, 等. 广州市流溪河水体中6种内分泌干扰素时空分布特征与环境风险[J]. 环境科学, 2018, 39(3):1053-1064

    Fan J J, Wang S, Tang J P, et al. Spatio-temporal patterns and environmental risk of endocrine disrupting chemicals in the Liuxi River[J]. Environmental Science, 2018, 39(3):1053-1064(in Chinese)

    Gong J, Ran Y, Chen D, et al. Occurrence and environmental risk of endocrine-disrupting chemicals in surface waters of the Pearl River, South China[J]. Environmental Monitoring & Assessment, 2009, 156(1-4):199-210
    Zhang L P, Wang X H, Ya M L, et al. Levels of endocrine disrupting compounds in South China Sea[J]. Marine Pollution Bulletin, 2014, 85(2):628-633
    Zhao J L, Ying G G, Wang L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry[J]. Science of the Total Environment, 2009, 407(2):962-974
    刘畅伶, 张文强, 单保庆. 珠江口典型河段内分泌干扰物的空间分布及风险评价[J]. 环境科学学报, 2018, 38(1):115-124

    Liu C L, Zhang W Q, Shan B Q. Spatial distribution and risk assessment of endocrine disrupting chemicals in the typical station of Pearl River[J]. Acta Scientiae Circumstantiae, 2018, 38(1):115-124(in Chinese)

    Sun Y, Huang H, Sun Y, et al. Ecological risk of estrogenic endocrine disrupting chemicals in sewage plant effluent and reclaimed water[J]. Environmental Pollution, 2013, 180:339-344
    Adeel M, Song X, Wang Y, et al. Environmental impact of estrogens on human, animal and plant life:A critical review[J]. Environment International, 2016, 99:107-119
    Nie M, Yan C, Dong W, et al. Occurrence, distribution and risk assessment of estrogens in surface water, suspended particulate matter, and sediments of the Yangtze estuary[J]. Chemosphere, 2015, 127:109-116
    陈晓雯, 赵建亮, 刘有胜, 等. 长江中下游环境激素效应的污染特征及生态风险[J]. 生态毒理学报, 2016, 11(3):191-203

    Chen X W, Zhao J L, Liu Y S, et al. Occurrence and ecological risks of hormonal activities in the middle and lower reaches of Yangtze River[J]. Asian Journal of Ecotoxicology, 2016, 11(3):191-203(in Chinese)

    鲍阳阳, 孙瑞, 徐奔拓, 等. 黄浦江流域中酚类环境激素的分布特征及生态风险评价[J]. 上海大学学报:自然科学版, 2015, 21(4):472-480

    Bao Y Y, Sun R, Xu B T, et al. Distribution and ecological risk assessment of phenolic environmental hormones in Huangpu River Basin[J]. Journal of Shanghai University:Natural Science, 2015, 21(4):472-480(in Chinese)

    陈明, 杨小丽, 沈丹群, 等. 长江中下游某Unitank污水处理厂去除雌激素的效果分析[J]. 环境工程, 2012, 30(2):1-5

    Chen M, Yang X L, Shen D Q, et al. Removal of steroid estrogens in a municipal sewage treatment plant with Unitank process in the middle and lower reaches of Yangtze River region[J]. Environmental Engineering, 2012, 30(2):1-5(in Chinese)

    师博颖, 王智源, 刘俊杰, 等. 长江江苏段饮用水源地3种雌激素污染特征[J]. 环境科学学报, 2018, 30(3):875-883

    Shi B Y, Wang Z Y, Liu J J, et al. Pollution characteristics of three estrogens in drinking water sources in Jiangsu reach of the Yangtze River[J]. Acta Scientiae Circumstantiae, 2018, 30(3):875-883(in Chinese)

    蔡素婷. 酚类内分泌干扰物的气相色谱质谱法研究及应用[D]. 重庆:重庆大学, 2012:3-4 Cai S T. Determination of phenolic endocrine disrupting chemicals by gas chromatography/mass spectrometry[D]. Chongqing:Chongqing University, 2012:3

    -4(in Chinese)

    胡碧波, 阳春, 张智, 等. 嘉陵江典型城市江段的类固醇雌激素分布特性[J]. 中国给水排水, 2011, 27(21):54-58

    Hu B B, Yang C, Zhang Z, et al. Distribution characteristics of steroid estrogens in a typical urban section of Jialing River[J]. China Water & Wastewater, 2011, 27(21):54-58(in Chinese)

    Thorpe K L, Gross-Sorokin M, Johnson I, et al. An assessment of the model of concentration addition for predicting the estrogenic activity of chemical mixtures in wastewater treatment works effluents[J]. Environmental Health Perspectives, 2006, 114(Suppl 1):90-97
    Bicchi C, Schilirò T, Pignata C, et al. Analysis of environmental endocrine disrupting chemicals using the E-screen method and stir bar sorptive extraction in wastewater treatment plant effluents[J]. Science of the Total Environment, 2009, 407(6):1842-1851
    Metcalfe C D, Metcalfe T L, Kiparissis Y, et al. Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2001, 20:297-308
    Routledge E J, Sheahan D, Desbrow C, et al. Identification of estrogenic chemicals in STW effluent. 2.In vivo responses in trout and roach[J]. Environmental Science and Technology, 1998, 32:1559-1565
    Young W F, Whitehouse P, Johnson I, et al. Proposed predicted-no-effect-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. Environment Agency R&D Technical Report P2-T04/1[R]. Bristol:England and Wales Environment Agency, 2002
    European Commission (EC). Technical guidance document in support of commission Directive 93/67/EEC on risk assessment for new notified substances and commission regulation (EC) No. 1488/94 on risk assessment for existing substances[R]. Ispra, Italy:EC, 1996
    Hernando M D, Mezcua M, Fernández-Alba A R, et al. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments[J]. Talanta, 2006, 69(2):334-342
    Ying G G, Williams B, Kookana R. Environmental fate of alkylphenols and alkylphenol ethoxylates-A review[J]. Environment International, 2002, 28(3):215-226
    刘清云, 丘锦荣, 周志洪, 等. 珠三角城市污泥中壬基酚及重金属特征分析[J]. 环境科学学报, 2016, 36(6):2072-2078

    Liu Q Y, Qiu J R, Zhou Z H, et al. Residual nonylphenol and heavy metals in sewage sludge from wastewater treatment plants in Pearl River Delta region[J]. Acta Scientiae Circumstantiae, 2016, 36(6):2072-2078(in Chinese)

    陈玫宏, 郭敏, 刘丹, 等. 典型内分泌干扰物在太湖及其支流水体和沉积物中的污染特征[J]. 中国环境科学, 2017, 37(11):325-334

    Chen M H, Guo M, Liu D, et al. Occurrence and distribution of typical endocrine disruptors in surface water and sediments from Taihu Lake and its tributaries[J]. China Environmental Science, 2017, 37(11):325-334(in Chinese)

    袁哲军, 张洪昌, 胡双庆, 等. 上海典型畜禽场周边河流雌激素污染特征研究[J]. 农业环境科学学报, 2017, 36(8):1583-1589

    Yuan Z J, Zhang H C, Hu S Q, et al. Study on estrogen pollution characteristics of rivers around typical livestock and poultry farms in Shanghai[J]. Journal of Agro-Environment Science, 2017, 36(8):1583-1589(in Chinese)

    张永丽, 梁大山, 郭洪光, 等. 岷江、沱江流域丰水期典型雌激素的分布特征研究[J]. 中国农村水利水电, 2016(7):34-37
    张照韩, 冯玉杰, 高鹏, 等. 松花江水内分泌干扰物及雌激素活性调查[J]. 哈尔滨工业大学学报, 2011, 43(12):58-62

    Zhang Z H, Feng Y J, Gao P, et al. Preliminary survey of endocrine disrupting compounds and estrogenicity in Songhua River[J]. Journal of Harbin Institute of Technology, 2011, 43(12):58-62(in Chinese)

    王志强, 张依章, 张远, 等. 太湖流域宜溧河酚类内分泌干扰物的空间分布及风险评价[J]. 环境科学研究, 2012, 25(12):1351-1358

    Wang Z Q, Zhang Y Z, Zhang Y, et al. Spatial distribution and risk assessment of typical EDCs in Yili River of Taihu Basin[J]. Research of Environmental Sciences, 2012, 25(12):1351-1358(in Chinese)

  • 加载中
计量
  • 文章访问数:  2854
  • HTML全文浏览数:  2854
  • PDF下载数:  86
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-07
卓丽, 许榕发, 石运刚, 严骁, 庄僖, 胡凤琦, 刘强, 黄道建. 重庆长江流域水体中8种典型环境雌激素污染特征[J]. 生态毒理学报, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001
引用本文: 卓丽, 许榕发, 石运刚, 严骁, 庄僖, 胡凤琦, 刘强, 黄道建. 重庆长江流域水体中8种典型环境雌激素污染特征[J]. 生态毒理学报, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001
Zhuo Li, Xu Rongfa, Shi Yungang, Yan Xiao, Zhuang Xi, Hu Fengqi, Liu Qiang, Huang Daojian. Estrogens in Surface Water of the Yangtze River in Chongqing Section[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001
Citation: Zhuo Li, Xu Rongfa, Shi Yungang, Yan Xiao, Zhuang Xi, Hu Fengqi, Liu Qiang, Huang Daojian. Estrogens in Surface Water of the Yangtze River in Chongqing Section[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 149-157. doi: 10.7524/AJE.1673-5897.20190807001

重庆长江流域水体中8种典型环境雌激素污染特征

    作者简介: 卓丽(1984-),女,硕士,研究方向为化学品管理与风险防控,E-mail:zhuoli729@163.com
  • 1. 重庆市固体废物管理中心, 重庆 400020;
  • 2. 生态环境部华南环境科学研究所, 国家环境保护环境污染健康风险评价重点实验室, 广州 510655
基金项目:

重庆市生态环境局科研项目"长江干流重庆段环境激素化学品源解析与环境风险评估"(CQGGZX2019008)

摘要: 选择重庆市长江流域为研究区域,调查平水期和蓄水期水体中8种典型环境雌激素雌酮(E1)、雌二醇(E2)、雌三醇(E3)、已烯雌酚(DES)、炔雌醇(EE2)、4-壬基酚(4-NP)、4-辛基酚(4-t-OP)和双酚A(BPA)的浓度、组成和分布特征,并对其雌激素活性进行风险评价。结果表明,重庆市长江流域水体中除E2外,其余7种环境雌激素均有检出,总浓度范围为46.16~10 985.79 ng·L-1,主要污染物为4-NP和BPA。平水期4-t-OP、BPA浓度显著高于蓄水期,而4-NP则相反。空间分布上,各采样位点的环境雌激素污染状况相差较大,并未表现出明显的流向变化趋势或干支流差异。风险评估结果表明,平水期52%的位点及蓄水期22%的位点雌激素总活性高于1 ng·L-1,提示具有高雌激素活性风险,其中,E1为平水期主要雌激素活性贡献物质,而4-NP为蓄水期主要雌激素活性贡献物质。

English Abstract

参考文献 (36)

返回顶部

目录

/

返回文章
返回