人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展

李泽兵, 韩飞, 曾圣男, 谢馥芳, 叶培, 孙占学. 人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展[J]. 生态毒理学报, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001
引用本文: 李泽兵, 韩飞, 曾圣男, 谢馥芳, 叶培, 孙占学. 人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展[J]. 生态毒理学报, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001
Li Zebing, Han Fei, Zeng Shengnan, Xie Fufang, Ye Pei, Sun Zhanxue. A Review on the Factors Affecting the Removal of Sulfonamides from Breeding Wastewater in Constructed Wetlands[J]. Asian journal of ecotoxicology, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001
Citation: Li Zebing, Han Fei, Zeng Shengnan, Xie Fufang, Ye Pei, Sun Zhanxue. A Review on the Factors Affecting the Removal of Sulfonamides from Breeding Wastewater in Constructed Wetlands[J]. Asian journal of ecotoxicology, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001

人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展

    作者简介: 李泽兵(1981-),男,博士,讲师,研究方向为污水生物处理和矿山地下水修复,E-mail:lizebing@ecut.edu.cn
    通讯作者: 李泽兵, E-mail: lizebing@ecut.edu.cn
  • 基金项目:

    国家自然科学基金-国际(地区)合作研究项目(51861145308);国家自然科学基金-青年基金(51408112);省部共建核资源与环境国家重点实验室开放基金(NRE1407);赣州市科技局2017年星火计划

  • 中图分类号: X171.5

A Review on the Factors Affecting the Removal of Sulfonamides from Breeding Wastewater in Constructed Wetlands

    Corresponding author: Li Zebing, lizebing@ecut.edu.cn
  • Fund Project:
  • 摘要: 总结了近年来人工湿地去除养殖废水中磺胺类抗生素(sulfonamides,SAs)的研究成果,比较了环境pH、SAs的亲疏水性、湿地基质、植物、微生物以及环境条件等因素对人工湿地处理效果的影响。大量研究结果表明,人工湿地对于典型的SAs,包括磺胺嘧啶、磺胺甲嘧啶和磺胺甲恶唑等都有显著的去除效果。在酸性环境条件下,SAs呈阳离子形态,湿地基质的阳离子与SAs间发生阳离子交换,然后吸附去除。在中性或碱性条件下,SAs呈中性或阴离子形态,湿地基质或土壤中的有机质极性基团(酚羟基和羧基等)与SAs间依靠氢键作用和范德华作用键合。随后,在植物根系分泌物或腐殖质等的促进作用下,湿地中的厌氧或好氧微生物氧化分解SAs转化为氨、甲烷、CO2和H2O等,最终实现SAs的彻底去除。在未来的研究中,可应用包括宏基因组和代谢组学等分子生物学分析方法解析SAs的完整代谢途径,优化湿地系统的运行管理。应用包含多种基质和多种植物的复合湿地作为抗生素的深度处理系统,其多样化的转化途径将更有利于湿地去除废水中不断更替的抗生素类型。
  • 加载中
  • Moreno-Bondi M C, Marazuela M D, Herranz S, et al. An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples[J]. Analytical and Bioanalytical Chemistry, 2009, 365:921-946
    隋倩雯, 张俊亚, 魏源送, 等. 畜禽养殖过程抗生素使用于耐药病原菌及其抗性基因赋存的研究进展[J]. 生态毒理学报, 2015, 10(5):20-34

    Sui Q W, Zhang J Y, Wei Y S, et al. Veterinary antibiotics use, occurrence of antibiotic resistance pathogen and its antibiotic resistance genes in animal production:An overview[J]. Asian Journal of Ecotoxicology, 2015, 10(5):20-34(in Chinese)

    Suzuki S, Hoa P. Distribution of quinolones, sulfonamides, tetracyclines in aquatic environment and antibiotic resistance in Indochina[J]. Frontiers in Microbiology, 2012, 3:67-68
    Silva B F D, Jelic A, LopezSerna R, et al. Occurrence and distribution of pharmaceuticals in surface water, suspended solids and sediments of the Ebro River Basin, Spain[J]. Chemosphere, 2011, 85(8):1331-1339
    Wiegel S, Aulinger A, Brockmeyer R, et al. Pharmaceuticals in the river Elbe and its tributaries[J]. Chemosphere, 2004, 57(2):107-126
    Tamtam F, Mercier F, Bot L B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Science of the Total Environment, 2008, 393(1):84-95
    阮悦雯, 陈继淼, 郭昌胜, 等. 天津近郊地区淡水养殖水体的表层水及沉积物中典型抗生素的残留分析[J]. 农业环境科学学报, 2011, 12(30):2586-2593

    Ruan Y W, Chen J M, Guo C S, et al. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China[J]. Journal of Agro-Environment Science, 2011, 12(30):2586-2593(in Chinese)

    李文最, 陈高水, 郑艳影, 等. 闽江流域福州段水体中抗生素残留污染调查[J]. 实用预防医学, 2018, 12(25):1455-1458

    Li W Z, Chen G S, Zheng Y Y, et al. Contamination profiles of antibiotics residues in water bodies of the Fuzhou section of the Minjiang River[J]. Practical Preventive Medicine, 2018, 12(25):1455-1458(in Chinese)

    Yang W B, Zheng F F, Xue X, et al. Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents[J]. Journal of Colloid and Interface Science, 2011, 362(2):503-509
    Qiu J R, Zhao T, Liu Q Y, et al. Residual veterinary antibiotics in pig excreta after oral administration of sulfonamides[J]. Environmental Geochemistry and Health, 2016, 38(2):549-556
    Baran W, Adamek E, Ziemianska J, et al. Effects of the presence of sulfonamides in the environment and their influence on human health[J]. Journal of Hazardous Materials, 2011, 196:1-15
    Doretto K M, Rath S. Sorption of sulfadiazine on Brazilian soils[J]. Chemosphere, 2013, 90(6):2027-2034
    许浩浩, 吕伟娅. 人工湿地去除污废水中特殊污染物的研究进展[J]. 人民珠江, 2019, 40(5):110-116

    Xu H H, Lv W Y. Research progress of constructed wetland for removal of particular pollutants in wastewater[J]. Pearl River, 2019, 40(5):110-116(in Chinese)

    Song H L, Zhang S, Guo J H, et al. Vertical up-flow constructed wetlands exhibited efficient antibiotic removal but induced antibiotic resistance genes in effluent[J]. Chemosphere, 2018, 203:434-441
    Button M, Cosway K, Sui J, et al. Impacts and fate of triclosan and sulfamethoxazole in intensified re-circulating vertical flow constructed wetlands[J]. Science of the Total Environment, 2019, 649:1017-1029
    Chen J, Ying G G, Wei X D, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands:Effect of flow configuration and plant species[J]. Science of the Total Environment, 2016, 571(15):974-982
    Dan A, Yang Y, Dai Y, et al. Removal and factors influencing removal of sulfonamides and trimethoprim from domestic sewage in constructed wetlands[J]. Bioresource Technology, 2013, 146:363-370
    Lin L, Liu Y H, Wang Z, et al. Behavior of tetracycline and sulfamethazine with corresponding resistance genes from swine wastewater in pilot-scale constructed wetlands[J]. Journal of Hazardous Materials, 2014, 278(15):304-310
    Reinhold D, Vishwanathan S, Park J J, et al. Assessment of plant-driven removal of emerging organic pollutants by duckweed[J]. Chemosphere, 2010, 80(7):687-692
    Carda-Broch S, Berthod A. Countercurrent chromatography for the measurement of the hydrophobicity of sulfonamide amphoteric compounds[J]. Chromatographia, 2004, 59(1-2):79-87
    Li L L, Huang L D, Chung R S, et al. Sorption and dissipation of tetracyclines in soils and compost[J]. Pedosphere, 2010, 20(6):807-816
    Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76(4):558-564
    Kurwadkar S T, Adams C D, Meyer M T, et al. Effects of sorbate speciation on sorption of selected sulfonamides in three loamy soils[J]. Journal of Agriculture and Food Chemistry, 2007, 55(4):1370-1376
    Kümmerer K. Pharmaceuticals in the Environment[M]. Springer, 2008:1-3
    Bui T X, Choi H. Influence of ionic strength, anions, cations, and natural organic matter on the adsorption of pharmaceuticals to silica[J]. Chemosphere, 2010, 80(7):681-686
    Li Y, Zhu G, Ng W J, et al. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands:Design, performance and mechanism[J]. Science of the Total Environment, 2014, 468-469:908-932
    Thiele-Bruhn S. Adsorption of antibiotic pharmaceutical compound sulfapyridine by a long term differently fertilized loess Chemozem[J]. Journal of Plant Nutrition and Soil Science, 2000, 163(6):589-594
    Guan Y D, Wang B, Gao Y X, et al. Occurrence and fate of antibiotics in the aqueous environment and their removal by constructed wetlands in China:A review[J]. Pedosphere, 2017, 27(1):42-51
    Zhang X B, Guo W S, Ngo H H, et al. Performance evaluation of powered activated carbon for removing 28 types of antibiotics from water[J]. Journal of Environmental Management, 2016, 172:193-200
    韩跃飞. 养猪场废水中抗生素去除技术研究[D]. 上海:华东理工大学, 2019:47-48 Han Y F. Research on treatment technology of antibiotics in swine wastewater[D]. Shanghai:East China University of Science and Technology, 2019:47

    -48(in Chinese)

    Liu L, Liu C, Zheng J, et al. Elimination of veterinary antibiotics and antibiotic resistance genes from swine wastewater in the vertical flow constructed wetlands[J]. Chemosphere, 2013, 91(8):1088-1093
    Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine[J]. Chemosphere, 2009, 76:558-564
    程宪伟, 梁银秀, 祝惠, 等. 人工湿地处理水体中抗生素的研究进展[J]. 湿地科学, 2017, 15(1):125-131

    Cheng X W, Liang Y X, Zhu H, et al. Progress in the treatment of antibiotics in water by constructed wetlands[J]. Wetland Science, 2017, 15(1):125-131(in Chinese)

    Yan Q, Feng Y, Gao X, et al. Removal of pharmaceutically active compounds (PHACs) and toxicological response of Cyperus alternifolius exposed to PHACs in microcosm constructed wetlands[J]. Journal of Hazardous Materials, 2016, 301(15):566-575
    Boonsaner M, Hawker D W. Investigation of the mechanism of uptake and accumulation of zwitterionic tetracyclines by rice (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety, 2012, 78(1):142-147
    Liu L, Liu Y H, Liu C X, et al. Potential effect and accumulation of veterinary antibiotics in Phragmites australis under hydroponic conditions[J]. Ecological Engineering, 2013, 53:138-143
    Dietz A C, Schnoor J L. Supplement 1:Reviews in Environmental Health, 2001||Advances in Phytoremediation[J]. Environmental Health Perspectives, 2001, 109:163-168
    Dordio A V, Carvalho A J P. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix[J]. Journal of Hazardous Materials, 2013, 252-253:272-292
    Schröder P, Collins C. Conjugating enzymes involved in xenobiotic metabolism of organic xenobiotics in plants[J]. International Journal of Phytoremediation, 2002, 4(4):247-265
    Stottmeister U, Wießner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advance, 2003, 22(1-2):93-117
    Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interations with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57(1):233-266
    Truu M, Juhanson J, Truu J. Microbial biomass, activity and community composition in constructed wetlands[J]. Science of the Total Environment, 2009, 407(13):3958-3971
    Torrens A, Molle P, Boutin C, et al. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent[J]. Water Research, 2009, 43(7):1851-1858
    Kadlec R H, Wallace S D. Treatment Wetlands[M]. Boca Raton:Taylor and Francis, 2009:2-20
    Fischer K, Majewsky M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms[J]. Applied Microbiology and Biotechnology, 2014, 98(15):6583-6597
    Hijosa-Valsero M, Fink G, Schlüsener M P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization[J]. Chemosphere, 2011, 83(5):713-719
    Alvarino T, Suarez S, Lema J M, et al. Understanding the removal mechanisms of PPCPs and the influence of main technological parameters in anaerobic UASB and aerobic CAS reactors[J]. Journal of Hazardous Materials, 2014, 278(15):506-513
    Cheng D L, Ngo H H, Guo W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater[J]. Science of the Total Environment, 2018, 621:1664-1682
    Kümmerer K. The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges[J]. Environmental Management, 2009, 90(8):2354-2366
    Ingerslev F, Halling-SΦrensen B. Biodegradability properties of sulfonamides in activated sludge[J]. Environmental Toxicology and Chemistry, 2000, 19(10):2467-2473
    Perez S, Eichhorn P, Aga D S. Evaluating the biodegradability of sulfamethazine, sulfamethoxazole,sulfathiazole, and trimethoprim at different stages of sewage treatment[J]. Environmental Toxicology and Chemistry, 2005, 24(6):1361-1367
    黄晓凤, 王启贵, 李静, 等. 人工湿地处理畜禽污水中抗生素及抗性基因效果研究进展[J]. 家畜生态学报, 2017, 38(8):1-6

    Huang X F, Wang Q G, Li J, et al. Advances in research on antibiotics and resistance genes in livestock and poultry sewage by constructed wetlands[J]. Acta Ecologia Animalis Domastici, 2017, 38(8):1-6(in Chinese)

    Saeed T, Sun G. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands:Dependency on environmental parameters, operating conditions and supporting media[J]. Journal of Environmental Management, 2012, 112(15):429-448
    于慧卿. CWM1模型在人工湿地水体修复及生活污水处理中的应用研究[D]. 西安:长安大学, 2013:152 Yu H Q. The application of constructed wetland model No.1 to water body remediation and domestic wastewater treatment by constructed wetlands[D]. Xi'an:Chang'an University, 2013:152

    (in Chinese)

    Lee C, Fletcher T D, Sun G. Nitrogen removal in constructed wetland systems[J]. Engineering in Life Science, 2009, 9(1):11-22
  • 加载中
计量
  • 文章访问数:  2396
  • HTML全文浏览数:  2396
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-08-25
李泽兵, 韩飞, 曾圣男, 谢馥芳, 叶培, 孙占学. 人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展[J]. 生态毒理学报, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001
引用本文: 李泽兵, 韩飞, 曾圣男, 谢馥芳, 叶培, 孙占学. 人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展[J]. 生态毒理学报, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001
Li Zebing, Han Fei, Zeng Shengnan, Xie Fufang, Ye Pei, Sun Zhanxue. A Review on the Factors Affecting the Removal of Sulfonamides from Breeding Wastewater in Constructed Wetlands[J]. Asian journal of ecotoxicology, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001
Citation: Li Zebing, Han Fei, Zeng Shengnan, Xie Fufang, Ye Pei, Sun Zhanxue. A Review on the Factors Affecting the Removal of Sulfonamides from Breeding Wastewater in Constructed Wetlands[J]. Asian journal of ecotoxicology, 2020, 15(5): 49-58. doi: 10.7524/AJE.1673-5897.20190825001

人工湿地去除养殖废水中磺胺类抗生素的影响因素研究进展

    通讯作者: 李泽兵, E-mail: lizebing@ecut.edu.cn
    作者简介: 李泽兵(1981-),男,博士,讲师,研究方向为污水生物处理和矿山地下水修复,E-mail:lizebing@ecut.edu.cn
  • 1. 东华理工大学核资源与环境国家重点实验室, 南昌 330013;
  • 2. 东华理工大学水资源与环境工程学院, 南昌 330013;
  • 3. 江西五丰畜牧科技有限公司, 赣州 341905
基金项目:

国家自然科学基金-国际(地区)合作研究项目(51861145308);国家自然科学基金-青年基金(51408112);省部共建核资源与环境国家重点实验室开放基金(NRE1407);赣州市科技局2017年星火计划

摘要: 总结了近年来人工湿地去除养殖废水中磺胺类抗生素(sulfonamides,SAs)的研究成果,比较了环境pH、SAs的亲疏水性、湿地基质、植物、微生物以及环境条件等因素对人工湿地处理效果的影响。大量研究结果表明,人工湿地对于典型的SAs,包括磺胺嘧啶、磺胺甲嘧啶和磺胺甲恶唑等都有显著的去除效果。在酸性环境条件下,SAs呈阳离子形态,湿地基质的阳离子与SAs间发生阳离子交换,然后吸附去除。在中性或碱性条件下,SAs呈中性或阴离子形态,湿地基质或土壤中的有机质极性基团(酚羟基和羧基等)与SAs间依靠氢键作用和范德华作用键合。随后,在植物根系分泌物或腐殖质等的促进作用下,湿地中的厌氧或好氧微生物氧化分解SAs转化为氨、甲烷、CO2和H2O等,最终实现SAs的彻底去除。在未来的研究中,可应用包括宏基因组和代谢组学等分子生物学分析方法解析SAs的完整代谢途径,优化湿地系统的运行管理。应用包含多种基质和多种植物的复合湿地作为抗生素的深度处理系统,其多样化的转化途径将更有利于湿地去除废水中不断更替的抗生素类型。

English Abstract

参考文献 (55)

返回顶部

目录

/

返回文章
返回