农村地区固体燃料使用导致的多环芳烃污染和健康风险

符楠, 吕少君, 薛国艳, 李大鹏, 周变红, 陈源琛, 杜伟. 农村地区固体燃料使用导致的多环芳烃污染和健康风险[J]. 生态毒理学报, 2020, 15(3): 123-133. doi: 10.7524/AJE.1673-5897.20191115001
引用本文: 符楠, 吕少君, 薛国艳, 李大鹏, 周变红, 陈源琛, 杜伟. 农村地区固体燃料使用导致的多环芳烃污染和健康风险[J]. 生态毒理学报, 2020, 15(3): 123-133. doi: 10.7524/AJE.1673-5897.20191115001
Fu Nan, Lv Shaojun, Xue Guoyan, Li Dapeng, Zhou Bianhong, Chen Yuanchen, Du Wei. Polycyclic Aromatic Hydrocarbons Pollution and Health Risks Associated with Solid Fuel Use in Rural Areas[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 123-133. doi: 10.7524/AJE.1673-5897.20191115001
Citation: Fu Nan, Lv Shaojun, Xue Guoyan, Li Dapeng, Zhou Bianhong, Chen Yuanchen, Du Wei. Polycyclic Aromatic Hydrocarbons Pollution and Health Risks Associated with Solid Fuel Use in Rural Areas[J]. Asian Journal of Ecotoxicology, 2020, 15(3): 123-133. doi: 10.7524/AJE.1673-5897.20191115001

农村地区固体燃料使用导致的多环芳烃污染和健康风险

    作者简介: 符楠(1998-),男,本科生,研究方向为空气多环芳烃污染及健康风险,E-mail:FishTalk0625@163.com
  • 基金项目:

    中国博士后科学基金资助项目(2019M661425);国家自然科学青年基金资助项目(41701584)

  • 中图分类号: X171.5

Polycyclic Aromatic Hydrocarbons Pollution and Health Risks Associated with Solid Fuel Use in Rural Areas

  • Fund Project:
  • 摘要: 为了考察固体燃料使用导致的农村地区多环芳烃污染现状,并评估其对居民造成的健康风险,在北方(山西太谷)和南方(四川南充)选取典型农村家庭,配对测定了农户室内外空气中28种多环芳烃浓度,分析了不同地区多环芳烃污染特征,并评估了居民的呼吸暴露风险。山西室内外多环芳烃浓度分别为(283.7±256.0)ng·m-3和(135.2±50.4)ng·m-3,四川室内外多环芳烃浓度分别为(163.4±132.8)ng·m-3和(87.6±46.2)ng·m-3,室内浓度显著高于室外浓度,室内外比值(I/O)分别为2.3和1.8,室内源是影响多环芳烃污染的主要因素。虽然,高环多环芳烃的质量浓度只占总浓度的13%~25%,但其毒性却占到总毒性的70%~89%,说明对高环多环芳烃应予以更多关注。使用蜂窝煤的家庭,其室内多环芳烃浓度要比用薪柴的低74%。通过对2个地区居民进行风险估算发现,山西和四川居民因为多环芳烃暴露的终身致癌风险分别为1.1×10-4和4.8×10-5,都高于可接受水平10-6,说明这2个地区具有较高的暴露风险,亟待关注。
  • 加载中
  • Du W, Li X Y, Chen Y C, et al. Household air pollution and personal exposure to air pollutants in rural China-A review[J]. Environmental Pollution, 2018, 237:625-638
    Tao S, Ru M Y, Du W, et al. Quantifying the rural residential energy transition in China from 1992 to 2012 through a representative national survey[J]. Nature Energy, 2018, 3:567-573
    Zhao B, Zheng H T, Wang S X, et al. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005-2015[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115:12401-12406
    Neff J. Polycyclic Aromatic Hydrocarbons in the Aquatic Environment:Sources, Fates and Biological Effects[M]. London:Applied Science Publication, 1979:192-208
    Perera F, Hemminki K, Jedrychowski W, et al. In utero DNA damage from environmental pollution is associated with somatic gene mutation in newborns[J]. Cancer Epidemiology Biomarkers & Prevention, 2002, 11:1134-1137
    Zhang Y X, Tao S, Shen H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106:21063-21067
    United States Environmental Protection Agency (U.S. EPA). Water-related environmental fate of 129 priority pollutants[R]. Washington D C:Office of Water Planning and Standards, 1979
    Shen H Z, Tao S, Liu J F, et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility[J]. Scientific Reports, 2014, 10:1-8
    Asante-Duah K. Public Health Risk Assessment for Human Exposure to Chemicals[M]. Springer Publisher, 2002:87-103
    Du W, Chen Y C, Zhu X, et al. Wintertime air pollution and health risk assessment of inhalation exposure to polycyclic aromatic hydrocarbons in rural China[J]. Atmospheric Environment, 2018, 191:1-8
    Shen H Z, Huang Y, Wang R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions[J]. Environmental Science & Technology, 2013, 47:6415-6424
    Li W, Wang C, Wang H, et al. Atmospheric polycyclic aromatic hydrocarbons in rural and urban areas of northern China[J]. Environmental Pollution, 2014, 192:83-90
    Liu S Z, Tao S, Liu W X, et al. Atmospheric polycyclic aromatic hydrocarbons in north China:A winter-time study[J]. Environmental Science & Technology, 2007, 41:8256-8261
    Johannesson S, Gustafson P, Molnar P, et al. Exposure to fine particles (PM2.5 and PM1) and black smoke in the general population:Personal, indoor, and outdoor levels[J]. Journal of Exposure Science & Environmental Epidemiology, 2007, 17:613-624
    Mohammadyan M, Ashmore M. Personal exposure and indoor PM2.5 concentrations in an urban population[J]. Indoor & Built Environment, 2005, 14:313-320
    Ohura T, Noda T, Amagai T, et al. Prediction of personal exposure to PM2.5 and carcinogenic polycyclic aromatic hydrocarbons by their concentrations in residential microenvironments[J]. Environmental Science & Technology, 2005, 39:5592-5599
    潘小川, 董兆举, 金晓滨, 等. 农村地区空气污染人群暴露评价研究[J]. 环境与健康杂志, 2001, 18(6):323-325

    Pan X C, Dong Z J, Jin X B, et al. Study on assessment for exposure to air pollution in rural areas[J]. Journal of Environment and Health, 2001, 18(6):323-325(in Chinese)

    Gao X, Yu Q, Gu Q, et al. Indoor air pollution from solid biomass fuels combustion in rural agricultural area of Tibet, China[J]. Indoor Air, 2009, 19:198-205
    Balakrishnan K, Sambandam S, Ramaswamy P, et al. Exposure assessment for respirable particulates associated with household fuel use in rural districts of Andhra Pradesh, India[J]. Journal of Exposure Analysis & Environmental Epidemiology, 2004, 14:514-525
    Huang Y, Du W, Chen Y C, et al. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China[J]. Environmental Pollution, 2017, 231:635-643
    Chen Y C, Shen G F, Huang Y, et al. Household air pollution and personal exposure risk of polycyclic aromatic hydrocarbons among rural residents in Shanxi, China[J]. Indoor Air, 2015, 26:246
    Lin N, Chen Y C, Du W, et al. Inhalation exposure and risk of polycyclic aromatic hydrocarbons (PAHs) among the rural population adopting wood gasifier stoves compared to different fuel-stove users[J]. Atmospheric Environmental, 2016, 147:485-491
    Achten C, Andersson J T. Overview of polycyclic aromatic compounds (PAC)[J]. Polycyclic Aromatic Compounds, 2015, 35:177-186
    Billiard S M, Bols N C, Hodson P V. In vitro and in vivo comparisons of fish-specific CYP1A induction relative potency factors for selected polycyclic aromatic hydrocarbons[J]. Ecotoxicology and Environmental Safety, 2004, 59:292-299
    Boström C E, Gerde P, Hanberg A, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air[J]. Environmental Health Perspectives, 2002, 110:451-488
    Larsen J, Larsen P. Chemical Carcinogens. Air Pollution and Health[M]. Cambridge:The Royal Society of Chemistry, 1998:33-56
    Malcolm H, Dobson S. The Calculation of an environmental assessment level (EAL) for atmospheric PAHs using relative potencies, Report No. DoE/HMIP/RR/94/041[R]. London:Department of the Environment, 1994
    Nisbet I C, LaGoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs)[J]. Toxicology and Applied Pharmacology, 1992, 16:290-300
    United States Environmental Protection Agency. Estimation Programs Interface SuiteTM for Microsoft® Windows[CP]. v 4.1. Washington DC:United States Environmental Protection Agency, 2012
    Office of Environmental Health Hazard Assessment (OEEHA). The air toxics hot spots program guidance manual for preparation of health risk assessment[R]. Oakland, CA:California Environmental Protection Agency, 2003
    Office of Environmental Health Hazard Assessment (OEEHA). Air toxics hot spots program risk assessment guidelines, air toxicology and epidemiology section[R]. Oakland, CA:California Environmental Protection Agency, 2005
    World Health Organization (WHO). WHO guidelines for indoor air quality:Selected Pollutants[R]. Geneva:WHO Regional Office for Europe, 2010
    Duan X L, Wang B, Zhao X, et al. Personal inhalation exposure to polycyclic aromatic hydrocarbons in urban and rural residents in a typical northern city in China[J]. Indoor Air, 2014, 24:464-473
    Shen G F, Zhang Y Y, Wei S Y, et al. Indoor/outdoor pollution level and personal inhalation exposure of polycyclic aromatic hydrocarbons through biomass fuelled cooking[J]. Air Quality, Atmosphere & Health, 2014, 7:449-458
    Zhang J D, Liu W X, Xu Y S, et al. Distribution characteristics of and personal exposure with polycyclic aromatic hydrocarbons and particulate matter in indoor and outdoor air of rural households in Northern China[J]. Environmental Pollution, 2019, 225:113176-113185
    Shen G F, Tao S, Wei S Y, et al. Field measurement of emission factors of PM, EC, OC, parent, nitro-, and oxy-polycyclic aromatic hydrocarbons for residential briquette, coal cake, and wood in rural Shanxi, China[J]. Environmental Science & Technology, 2013, 47:2998-3005
    Delistraty D. Toxic equivalency factor approach for risk assessment of polycyclic aromatic hydrocarbons[J]. Toxicological & Environmental Chemistry, 1997, 64:81-108
    中华人民共和国环境保护部. 环境空气质量标准(GB3095-2012)[S]. 北京:中华人民共和国环境保护部, 2012
    中华人民共和国环境保护部. 环境空气质量标准(GB 18883-2002)[S]. 北京:中华人民共和国环境保护部, 2002
    Zhang J, Smith K. Household air pollution from coal and biomass fuels in China:Measurements, health impacts, and interventions[J]. Environmental Health Perspectives, 2007, 6:848-855
    Du W, Xiao Y, Luo Z, et al. Submicrometer PM1.0 exposure from household burning of solid fuels[J]. Environmental Science & Technology Letters, 2020, 7(1):1-6
    Shen G F. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China[J]. Journal of Environmental Sciences, 2015, 37:1-7
    顾庆平. 西藏室内多环芳烃污染特征及其致癌风险[D]. 上海:复旦大学, 2009:25-33 Gu Q P. The characteristics of indoor polycyclic aromatic hydrocarbons in rural Tibet and its carcinogenic risk[D]. Shanghai:Fudan University, 2009:25

    -33(in Chinese)

    Li C L, Kang S C, Chen P F, et al. Characterizations of particle-bound trace metals and polycyclic aromatic hydrocarbons (PAHs) within Tibetan tents of south Tibetan Plateau, China[J]. Environmental Science and Pollution Research, 2012, 19(5):1620-1628
    Huang Z Y, Wu C C, Bao L J, et al. Characteristics and potential health risk of rural Tibetans' exposure to polycyclic aromatic hydrocarbons during summer period[J]. Environment International, 2018, 118:70-77
    Ding J N, Zhong J J, Yang Y F, et al. Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural Chinese home through biomass fuelled cooking[J]. Environmental Pollution, 2012, 169:160-166
    Wu F Y, Liu X P, Wang W, et al. Characterization of particulate-bound PAHs in rural households using different types of domestic energy in Henan Province, China[J]. The Science of the Total Environment, 2015, 536:840-846
    马利英, 董泽琴, 吴可嘉, 等. 贵州农村地区室内空气质量及细颗粒物污染特征[J]. 中国环境监测, 2015, 31(1):28-34

    Ma L Y, Dong Z Q, Wu K J, et al. Indoor air quality and characteristics of fine particle for rural Guizhou[J]. Environmental Monitoring in China, 2015, 31(1):28-34(in Chinese)

    陆晨刚, 高翔, 余琦, 等. 西藏民居室内空气中多环芳烃及其对人体健康影响[J]. 复旦学报:自然科学版, 2006, 45:714-718 Lu C G, Gao X, Yu Q, et al. Indoor air polycyclic aromatic hydrocarbons in Tibet and the effect on human health[J]. Journal of Fudan University:Natural Science, 2006

    , 45:714-718(in Chinese)

    Li Y Q, Xu H M, Wang J H, et al. Personal exposure to PM2.5-bound organic species from domestic solid fuel combustion in rural Guanzhong Basin, China:Characteristics and health implication[J]. Chemosphere, 2019, 227:53-62
    吕俊岗, 张霖琳, 许人骥, 等. 云南省宣威市和富源县空气和土壤中多环芳烃污染水平研究[J]. 中国环境监测, 2010, 26:1-6 Lv J G, Zhang L L, Xu R J, et al. Assessment of polycyclic aromatic hydrocarbons (PAHs) level in Xuanwei and Fuyuan, Yunnan Province[J]. Environmental Monitoring in China, 2010

    , 26:1-6(in Chinese)

    Lv J, Xu R, Wu G, et al. Indoor and outdoor air pollution of polycyclic aromatic hydrocarbons (PAHs) in Xuanwei and Fuyuan, China[J]. Journal of Environmental Monitoring, 2009, 11(7):1368-1374
    彭彬, 苏玉红, 杜伟, 等. 湖北农村燃柴和燃煤家庭大气多环芳烃污染特征和呼吸暴露风险[J].生态毒理学报, 2018, 13(5):171-181

    Peng B, Su Y H, Du W, et al. Household air pollution by polycyclic aromatic hydrocarbons in homes burning wood and coals and inhalation exposure risks in rural Hubei[J]. Asian Journal of Ecotoxicology, 2018, 13(5):171-181(in Chinese)

    韦思业. 山西和顺地区农村室内细颗粒物和多环芳烃的污染与呼吸暴露研究[D]. 乌鲁木齐:新疆大学, 2012:27-30 Wei S Y. Indoor air pollution and personal exposure to fine particulate matter and PAHs in rural areas of Heshun, Shanxi[D]. Urumqi:Xinjiang University, 2012:27

    -30(in Chinese)

  • 加载中
计量
  • 文章访问数:  2421
  • HTML全文浏览数:  2421
  • PDF下载数:  62
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-15

农村地区固体燃料使用导致的多环芳烃污染和健康风险

    作者简介: 符楠(1998-),男,本科生,研究方向为空气多环芳烃污染及健康风险,E-mail:FishTalk0625@163.com
  • 1. 南京理工大学能源与动力工程学院, 南京 210094;
  • 2. 华东师范大学地理科学学院, 地理信息科学教育部重点实验室, 上海 200241;
  • 3. 宝鸡文理学院地理与环境学院, 陕西省灾害监测与机理模拟重点实验室, 宝鸡 721013;
  • 4. 浙江工业大学环境学院, 浙江省工业污染微生物控制技术重点实验室, 杭州 310014;
  • 5. 北京大学城市与环境学院, 地表过程分析与模拟教育部重点实验室, 北京 100871
基金项目:

中国博士后科学基金资助项目(2019M661425);国家自然科学青年基金资助项目(41701584)

摘要: 为了考察固体燃料使用导致的农村地区多环芳烃污染现状,并评估其对居民造成的健康风险,在北方(山西太谷)和南方(四川南充)选取典型农村家庭,配对测定了农户室内外空气中28种多环芳烃浓度,分析了不同地区多环芳烃污染特征,并评估了居民的呼吸暴露风险。山西室内外多环芳烃浓度分别为(283.7±256.0)ng·m-3和(135.2±50.4)ng·m-3,四川室内外多环芳烃浓度分别为(163.4±132.8)ng·m-3和(87.6±46.2)ng·m-3,室内浓度显著高于室外浓度,室内外比值(I/O)分别为2.3和1.8,室内源是影响多环芳烃污染的主要因素。虽然,高环多环芳烃的质量浓度只占总浓度的13%~25%,但其毒性却占到总毒性的70%~89%,说明对高环多环芳烃应予以更多关注。使用蜂窝煤的家庭,其室内多环芳烃浓度要比用薪柴的低74%。通过对2个地区居民进行风险估算发现,山西和四川居民因为多环芳烃暴露的终身致癌风险分别为1.1×10-4和4.8×10-5,都高于可接受水平10-6,说明这2个地区具有较高的暴露风险,亟待关注。

English Abstract

参考文献 (54)

目录

/

返回文章
返回