人多能干细胞在环境污染物风险评估中的应用与展望

杨仁君, 任悦, 沈素, 殷诺雅, Francesco Faiola, 张杨. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002
引用本文: 杨仁君, 任悦, 沈素, 殷诺雅, Francesco Faiola, 张杨. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002
Yang Renjun, Ren Yue, Shen Su, Yin Nuoya, Francesco Faiola, Zhang Yang. Application and Prospect of Human Pluripotent Stem Cells in Risk Assessment of Environmental Pollutants[J]. Asian journal of ecotoxicology, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002
Citation: Yang Renjun, Ren Yue, Shen Su, Yin Nuoya, Francesco Faiola, Zhang Yang. Application and Prospect of Human Pluripotent Stem Cells in Risk Assessment of Environmental Pollutants[J]. Asian journal of ecotoxicology, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002

人多能干细胞在环境污染物风险评估中的应用与展望

    作者简介: 杨仁君(1990-),男,博士,研究方向为干细胞毒理学,E-mail:313659164@qq.com
  • 基金项目:

    国家自然科学基金面上项目(21577166,21876197);国家自然科学基金青年科学基金资助项目(21707160)

  • 中图分类号: X171.5

Application and Prospect of Human Pluripotent Stem Cells in Risk Assessment of Environmental Pollutants

  • Fund Project:
  • 摘要: 在环境污染问题日益严峻的今天,人们亟需一套高效的毒理学评价体系来全面评估各类环境污染物的毒性效应和致毒机制,并阐明化合物结构与毒性效应之间的关系,进而指导安全化合物的合成。人多能干细胞(hPSCs)具有近乎无限的增殖能力和分化成所有成体细胞的潜能,近年来在毒理学的应用中崭露头角,显现出极大的应用潜力。由hPSCs分化而来的细胞可以代替原代细胞进行高通量的毒理学研究;hPSCs分化模型便于在体外研究环境污染物暴露对人体胚胎发育过程的毒性;基于hPSCs构建的类器官技术也使环境污染物的器官毒性研究成为可能。hPSCs在环境污染物风险评估中有很高的应用价值。
  • 加载中
  • Zhao X Y, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260):86-90
    Evans M J, Kaufman M H. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156
    Laschinski G, Vogel R, Spielmann H. Cytotoxicity test using blastocyst-derived euploid embryonal stem cells:A new approach to in vitro teratogenesis screening[J]. Reproductive Toxicology, 1991, 5(1):57-64
    Spielmann H, Pohl I, Doring B, et al. The embryonic stem cell test (EST), an in vitro embryotoxicity test using two permanent mouse cell lines:3T3 fibroblasts and embryonic stem cells[J]. Toxicology in Vitro, 1997, 10:119-127
    Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147
    Scholz G, Pohl I, Genschow E, et al. Embryotoxicity screening using embryonic stem cells in vitro:Correlation to in vivo teratogenicity[J]. Cells Tissues Organs, 1999, 165(3-4):203-211
    Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872
    Park I H, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells[J]. Cell, 2008, 134(5):877-886
    Adler S, Pellizzer C, Hareng L, et al. First steps in establishing a developmental toxicity test method based on human embryonic stem cells[J]. Toxicology in Vitro, 2008, 22(1):200-211
    Guo L, Abrams R M, Babiarz J E, et al. Estimating the risk of drug-induced proarrhythmia using human induced pluripotent stem cell-derived cardiomyocytes[J]. Toxicological Sciences, 2011, 123(1):281-289
    Rowe R G, Daley G Q. Induced pluripotent stem cells in disease modelling and drug discovery[J]. Nature Reviews Genetics, 2019, 20(7):377-388
    Pei Y, Peng J, Behl M, et al. Comparative neurotoxicity screening in human iPSC-derived neural stem cells, neurons and astrocytes[J]. Brain Research, 2016, 1638(Pt A):57-73
    Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system:Evidence from humans and animal models[J]. Environmental Health Perspectives, 2000, 108(Suppl 3):511-533
    Kadereit S, Zimmer B, van Thriel C, et al. Compound selection for in vitro modeling of developmental neurotoxicity[J]. Frontiers in Bioscience (Landmark Ed.), 2012, 17:2442-2460
    Colleoni S, Galli C, Gaspar J A, et al. Development of a neural teratogenicity test based on human embryonic stem cells:Response to retinoic acid exposure[J]. Toxicological Sciences, 2011, 124(2):370-377
    Hoelting L, Scheinhardt B, Bondarenko O, et al. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles[J]. Archive of Toxicology, 2013, 87(4):721-733
    Huang B, Ning S, Zhang Q, et al. Bisphenol A represses dopaminergic neuron differentiation from human embryonic stem cells through downregulating the expression of insulin-like growth factor 1[J]. Molecular Neurobiology, 2017, 54(5):3798-3812
    Krug A K, Kolde R, Gaspar J A, et al. Human embryonic stem cell-derived test systems for developmental neurotoxicity:A transcriptomics approach[J]. Archive of Toxicology, 2013, 87(1):123-143
    Chen H, Seifikar H, Larocque N, et al. Using a multi-stage hESC model to characterize BDE-47 toxicity during neurogenesis[J]. Toxicological Sciences, 2019, 171(1):221-234
    Trevino L S, Katz T A. Endocrine disruptors and developmental origins of nonalcoholic fatty liver disease[J]. Endocrinology, 2018, 159(1):20-31
    Liang S, Liang S, Yin N, et al. Establishment of a human embryonic stem cell-based liver differentiation model for hepatotoxicity evaluations[J]. Ecotoxicology and Environmental Safety, 2019, 174:353-362
    van der Linde D, Konings E E, Slager M A, et al. Birth prevalence of congenital heart disease worldwide:A systematic review and meta-analysis[J]. Journal of the American College of Cardiology 2011, 58(21):2241-2247
    Hoffman J I E, Kaplan S. The incidence of congenital heart disease[J]. Journal of the American College of Cardiology, 2002, 39(12):1890-1900
    Fu H, Wang L, Wang J, et al. Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells[J]. Science of the Total Environment, 2019, 651(Pt 1):1038-1046
    Sant K E, Jacobs H M, Borofski K A, et al. Embryonic exposures to perfluorooctanesulfonic acid (PFOS) disrupt pancreatic organogenesis in the zebrafish, Danio rerio[J]. Environmental Pollution, 2017, 220(Pt B):807-817
    Liu S, Yin N, Faiola F. PFOA and PFOS disrupt the generation of human pancreatic progenitor cells[J]. Environmental Science & Technology Letters, 2018, 5(5):237-242
    Lind L, Zethelius B, Salihovic S, et al. Circulating levels of perfluoroalkyl substances and prevalent diabetes in the elderly[J]. Diabetologia, 2014, 57(3):473-479
    Karnes C, Winquist A, Steenland K. Incidence of typeⅡ diabetes in a cohort with substantial exposure to perfluorooctanoic acid[J]. Environmental Research, 2014, 128:78-83
    Domazet S L, Grontved A, Timmermann A G, et al. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later:The European Youth Heart Study[J]. Diabetes Care, 2016, 39(10):1745-1751
    Conway B, Innes K E, Long D. Perfluoroalkyl substances and beta cell deficient diabetes[J]. Journal of Diabetes and Its Complications, 2016, 30(6):993-998
    Cardenas A, Gold D R, Hauser R, et al. Plasma concentrations of per- and polyfluoroalkyl substances at baseline and associations with glycemic indicators and diabetes incidence among high-risk adults in the diabetes prevention program trial[J]. Environmental Health Perspectives, 2017, 125(10):107001
    Gurtner G C, Werner S, Barrandon Y, et al. Wound repair and regeneration[J]. Nature, 2008, 453(7193):314-321
    Culton D A, Qian Y, Li N, et al. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype:A paradigm of human autoimmunity[J]. Journal of Autoimmunity, 2008, 31(4):311-324
    Cheng Z, Liang X, Liang S, et al. A human embryonic stem cell-based in vitro model revealed that ultrafine carbon particles may cause skin inflammation and psoriasis[J]. Journal of Environmental Sciences, 2020, 87:194-204
    Haycock J W. 3D cell culture:A review of current approaches and techniques[J]. Methods in Molecular Biology, 2011, 695:1-15
    Lancaster M A, Knoblich J A. Organogenesis in a dish:Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125
    Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature, 2013, 499(7459):481-484
    Pasca S P. The rise of three-dimensional human brain cultures[J]. Nature, 2018, 553(7689):437-445
    Richards D J, Coyle R C, Tan Y, et al. Inspiration from heart development:Biomimetic development of functional human cardiac organoids[J]. Biomaterials, 2017, 142:112-123
    Huch M, Gehart H, van Boxtel R, et al. Long-term culture of genome-stable bipotent stem cells from adult human liver[J]. Cell, 2015, 160(1-2):299-312
    Leite S B, Roosens T, El Taghdouini A, et al. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro[J]. Biomaterials, 2016, 78:1-10
    Boj S F, Hwang C I, Baker L A, et al. Organoid models of human and mouse ductal pancreatic cancer[J]. Cell, 2015, 160(1-2):324-338
    Barkauskas C E, Chung M I, Fioret B, et al. Lung organoids:Current uses and future promise[J]. Development, 2017, 144(6):986-997
    Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells[J]. Cell Stem Cell, 2017, 21(6):730-746.e6
    Kessler M, Hoffmann K, Brinkmann V, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids[J]. Nature Communication, 2015, 6:8989
    Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs[J]. Nature Communications, 2014, 5:4047
    Foster J W, Wahlin K, Adams S M, et al. Cornea organoids from human induced pluripotent stem cells[J]. Scientific Reports, 2017, 7:41286
    Maimets M, Rocchi C, Bron R, et al. Long-term in vitro expansion of salivary gland stem cells driven by Wnt signals[J]. Stem Cell Reports, 2016, 6(1):150-162
    Turco M Y, Gardner L, Hughes J, et al. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium[J].Nature Cell Biology, 2017, 19(5):568-577
    Titmarsh D M, Nurcombe V, Cheung C, et al. Vascular cells and tissue constructs derived from human pluripotent stem cells for toxicological screening[J]. Stem Cells and Development, 2019, 28(20):1347-1364
    Schwartz M P, Hou Z, Propson N E, et al. Human pluripotent stem cell-derived neural constructs for predicting neural toxicity[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40):12516-12521
    Mills R J, Parker B L, Quaife-Ryan G A, et al. Drugscreening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway[J]. Cell Stem Cell, 2019, 24(6):895-907.e6
    李朋彦, 李春雨, 陆小华, 等. 基于类器官3D培养和高内涵成像的药物肝毒性评价模型研究[J]. 药学学报, 2017, 52(7):1055-1062

    Li P Y, Li C Y, Lu X H, et al. The three dimensional organoids-based high content imaging model for hepatotoxicity assessment[J]. Acta Pharmaceutica Sinica, 2017, 52(7):1055-1062(in Chinese)

    Czerniecki S M, Cruz N M, Harder J L, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping[J]. Cell Stem Cell, 2018, 22(6):929-940.e4
    Li X J, Valadez A V, Zuo P, et al. Microfluidic 3D cell culture:Potential application for tissue-based bioassays[J]. Bioanalysis, 2012, 4(12):1509-1525
    van Duinen V, Trietsch S J, Joore J, et al. Microfluidic 3D cell culture:From tools to tissue models[J]. Current Opinion in Biotechnology, 2015, 35:118-126
    Huh D, Matthews B D, Mammoto A, et al. Reconstituting organ-level lung functions on a chip[J]. Science, 2010, 328(5986):1662-1668
    Park S E, Georgescu A, Huh D. Organoids-on-a-chip[J]. Science, 2019, 364(6444):960-965
  • 加载中
计量
  • 文章访问数:  2561
  • HTML全文浏览数:  2561
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-11-29
杨仁君, 任悦, 沈素, 殷诺雅, Francesco Faiola, 张杨. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002
引用本文: 杨仁君, 任悦, 沈素, 殷诺雅, Francesco Faiola, 张杨. 人多能干细胞在环境污染物风险评估中的应用与展望[J]. 生态毒理学报, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002
Yang Renjun, Ren Yue, Shen Su, Yin Nuoya, Francesco Faiola, Zhang Yang. Application and Prospect of Human Pluripotent Stem Cells in Risk Assessment of Environmental Pollutants[J]. Asian journal of ecotoxicology, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002
Citation: Yang Renjun, Ren Yue, Shen Su, Yin Nuoya, Francesco Faiola, Zhang Yang. Application and Prospect of Human Pluripotent Stem Cells in Risk Assessment of Environmental Pollutants[J]. Asian journal of ecotoxicology, 2020, 15(3): 47-55. doi: 10.7524/AJE.1673-5897.20191129002

人多能干细胞在环境污染物风险评估中的应用与展望

    作者简介: 杨仁君(1990-),男,博士,研究方向为干细胞毒理学,E-mail:313659164@qq.com
  • 1. 中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京 100085;
  • 2. 中国科学院大学资源与环境学院, 北京 100049;
  • 3. 首都医科大学附属北京友谊医院药学部, 北京 100050
基金项目:

国家自然科学基金面上项目(21577166,21876197);国家自然科学基金青年科学基金资助项目(21707160)

摘要: 在环境污染问题日益严峻的今天,人们亟需一套高效的毒理学评价体系来全面评估各类环境污染物的毒性效应和致毒机制,并阐明化合物结构与毒性效应之间的关系,进而指导安全化合物的合成。人多能干细胞(hPSCs)具有近乎无限的增殖能力和分化成所有成体细胞的潜能,近年来在毒理学的应用中崭露头角,显现出极大的应用潜力。由hPSCs分化而来的细胞可以代替原代细胞进行高通量的毒理学研究;hPSCs分化模型便于在体外研究环境污染物暴露对人体胚胎发育过程的毒性;基于hPSCs构建的类器官技术也使环境污染物的器官毒性研究成为可能。hPSCs在环境污染物风险评估中有很高的应用价值。

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回