磷酸三正丁酯对蚯蚓的生态毒性效应

王倩, 杨扬, 李梅. 磷酸三正丁酯对蚯蚓的生态毒性效应[J]. 生态毒理学报, 2021, 16(1): 126-136. doi: 10.7524/AJE.1673-5897.20200706001
引用本文: 王倩, 杨扬, 李梅. 磷酸三正丁酯对蚯蚓的生态毒性效应[J]. 生态毒理学报, 2021, 16(1): 126-136. doi: 10.7524/AJE.1673-5897.20200706001
Wang Qian, Yang Yang, Li Mei. Toxic Effects of Tri-n-butyl Phosphate on Earthworm Eisenia fetida[J]. Asian Journal of Ecotoxicology, 2021, 16(1): 126-136. doi: 10.7524/AJE.1673-5897.20200706001
Citation: Wang Qian, Yang Yang, Li Mei. Toxic Effects of Tri-n-butyl Phosphate on Earthworm Eisenia fetida[J]. Asian Journal of Ecotoxicology, 2021, 16(1): 126-136. doi: 10.7524/AJE.1673-5897.20200706001

磷酸三正丁酯对蚯蚓的生态毒性效应

    作者简介: 王倩(1997-),女,硕士研究生,研究方向为环境毒理学,E-mail:1970208324@qq.com
    通讯作者: 李梅, E-mail: meili@nju.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41571468,41773115);江苏省科技支撑项目(BE2016736)

  • 中图分类号: X171.5

Toxic Effects of Tri-n-butyl Phosphate on Earthworm Eisenia fetida

    Corresponding author: Li Mei, meili@nju.edu.cn
  • Fund Project:
  • 摘要: 有机磷酸酯(OPEs)作为一种新型的阻燃剂和增塑剂,在环境中普遍存在,尤其在土壤中常被检出,因此其环境和健康风险亟待评估。为探究OPEs对土壤生物的毒性效应,选取磷酸三正丁酯(TnBP)作为受试物,以赤子爱胜蚓(Eisenia fetida)为指示生物,采用人工土壤法研究不同浓度TnBP对蚯蚓生长、抗氧化酶系统、乙酰胆碱酯酶(AChE)活性、体腔细胞DNA损伤及8-羟基脱氧鸟苷(8-OHdG)含量的影响。结果表明,TnBP暴露对蚯蚓生长无明显抑制作用,但TnBP胁迫可引起蚯蚓体内抗氧化酶活性增强,脂质过氧化产物丙二醛含量显著上升,表明蚯蚓受到氧化损伤;彗星试验结果显示,彗尾DNA含量和Olive尾矩均显著上升,表明TnBP暴露能够引起蚯蚓体腔细胞DNA损伤;8-OHdG含量也显著增加,其水平与暴露浓度存在明显的剂量-效应关系,提示TnBP暴露可引起蚯蚓体腔细胞氧化性DNA损伤;AChE活性受到的影响则较为微弱。综上,本研究阐明了TnBP暴露对蚯蚓的毒性效应并为进一步研究OPEs对土壤的生态风险评估提供科学依据。
  • 加载中
  • Hou R, Xu Y P, Wang Z J. Review of OPFRs in animals and humans:Absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere, 2016, 153:78-90
    Chen G L, Jin Y X, Wu Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption[J]. Environmental Toxicology and Pharmacology, 2015, 40(1):310-318
    Cui K Y, Wen J X, Zeng F, et al. Occurrence and distribution of organophosphate esters in urban soils of the subtropical City, Guangzhou, China[J]. Chemosphere, 2017, 175:514-520
    Wang X Q, Meng X J, Li F, et al. The critical factors affecting typical organophosphate flame retardants to mimetic biomembrane:An integrated in vitro and in silico study[J]. Chemosphere, 2019, 226:159-165
    Someya M, Suzuki G, Ionas A C, et al. Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam[J]. Emerging Contaminants, 2016, 2(2):58-65
    Cequier E, Marcé R M, Becher G, et al. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2014, 845:98-104
    Bollmann U E, Möller A, Xie Z Y, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J]. Water Research, 2012, 46(2):531-538
    Yang F X, Ding J J, Huang W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter[J]. Environmental Science & Technology, 2014, 48(1):63-70
    Wang Q W, Lam J C W, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158:108-115
    Cao S X, Zeng X Y, Song H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China[J]. Environmental Toxicology and Chemistry, 2012, 31(7):1478-1484
    Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46
    Gao X Z, Xu Y P, Ma M, et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny-Alesund, Svalbard, the Arctic[J]. Environmental Pollution, 2020, 264:114792
    高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展[J]. 生态毒理学报, 2015, 10(2):56-68

    Gao X Z, Xu Y P, Wang Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants[J]. Asian Journal of Ecotoxicology, 2015, 10(2):56-68(in Chinese)

    Yang J W, Zhao Y Y, Li M H, et al. A review of a class of emerging contaminants:The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs)[J]. International Journal of Molecular Sciences, 2019, 20(12):E2874
    Chen Y Y, Chen Y J, Zhang Y H, et al. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS[J]. Talanta, 2019, 194:320-328
    Wang Q Z, Zhao H X, Xu L, et al. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.)[J]. Ecotoxicology and Environmental Safety, 2019, 174:683-689
    Meeker J D, Stapleton H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters[J]. Environmental Health Perspectives, 2010, 118(3):318-323
    许宜平, 王子健, 陈睿, 等. 有机磷酸酯的暴露、毒性机制及环境风险评估[M]. 北京:科学出版社, 2019:5
    Zhong M Y, Wu H F, Mi W Y, et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China[J]. Science of the Total Environment, 2018, 615:1305-1311
    He C, Wang X Y, Tang S Y, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia:Is dietary exposure an important pathway of organophosphate esters and their metabolites?[J]. Environmental Science & Technology, 2018, 52(21):12765-12773
    Greaves A K, Su G Y, Letcher R J. Environmentally relevant organophosphate triesters in herring gulls:In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay[J]. Toxicology and Applied Pharmacology, 2016, 308:59-65
    Aznar-Alemany , Aminot Y, Vilà-Cano J, et al. Halogenated and organophosphorus flame retardants in European aquaculture samples[J]. Science of the Total Environment, 2018, 612:492-500
    Hou R, Huang C, Rao K F, et al. Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes[J]. Environmental Science & Technology, 2018, 52(5):3202-3210
    United States Environmental Protection Agency (US EPA). HPV Chemical Hazard Characterizations 2014[R]. Washington DC:US EPA, 2014
    van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153
    Luo Q, Gu L Y, Wu Z P, et al. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao River, Northeast China[J]. Chemosphere, 2020, 250:126297
    邓旭, 印红玲, 何婉玲, 等. 有机磷酸酯在成都市市/郊区剖面土壤及农作物中的分布及迁移[J]. 环境化学, 2019, 38(3):679-685

    Deng X, Yin H L, He W L, et al. Distribution and migration of OPEs in soil profile and crops in urban and suburban areas of Chengdu[J]. Environmental Chemistry, 2019, 38(3):679-685(in Chinese)

    He M J, Yang T, Yang Z H, et al. Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing, China:Implications for human exposure[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(3):349-361
    Wang Y, Li Z Y, Tan F, et al. Occurrence and air-soil exchange of organophosphate flame retardants in the air and soil of Dalian, China[J]. Environmental Pollution, 2020, 265:114850
    Yan S H, Wu H M, Qin J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Pollution, 2017, 225:559-568
    Hou R, Yuan S W, Feng C L, et al. Toxicokinetic patterns, metabolites formation and distribution in various tissues of the Chinese rare minnow (Gobiocypris rarus) exposed to tri(2-butoxyethyl) phosphate (TBOEP) and tri-n-butyl phosphate (TNBP)[J]. Science of the Total Environment, 2019, 668:806-814
    高丹, 同帜, 张圣虎, 等. 4种典型有机磷阻燃剂对斑马鱼胚胎毒性及风险评价[J]. 生态与农村环境学报, 2017, 33(9):836-844

    Gao D, Tong Z, Zhang S H, et al. Toxicity of four typical organic phosphorus flame retardants to zebrafish embryo and risk assessment[J]. Journal of Ecology and Rural Environment, 2017, 33(9):836-844(in Chinese)

    Asensio V, Rodríguez-Ruiz A, Garmendia L, et al. Towards an integrative soil health assessment strategy:A three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution[J]. Science of the Total Environment, 2013, 442:344-365
    Organization for Economic Cooperation and Development (OECD). Test No. 207:Earthworm, acute toxicity tests[R]. Paris:OECD, 1984
    Eyambe G S, Goven A J, Fitzpatrick L C, et al. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies[J]. Laboratory Animals, 1991, 25(1):61-67
    Yang Y, Xiao Y, Chang Y Q, et al. Intestinal damage, neurotoxicity and biochemical responses caused by tris(2-chloroethyl) phosphate and tricresyl phosphate on earthworm[J]. Ecotoxicology and Environmental Safety, 2018, 158:78-86
    Kelly K A, Havrilla C M, Brady T C, et al. Oxidative stress in toxicology:Established mammalian and emerging piscine model systems[J]. Environmental Health Perspectives, 1998, 106(7):375-384
    刘文军, 高健鹏, 王冠颖, 等. DEHP对土壤蚯蚓氧化胁迫及DNA损伤的研究[J]. 土壤学报, 2017, 54(5):1170-1180

    Liu W J, Gao J P, Wang G Y, et al. Oxidating stress and DNA damage of DEHP to soil earthworms[J]. Acta Pedologica Sinica, 2017, 54(5):1170-1180(in Chinese)

    沈洪艳, 焦晓会, 武彤. 头孢噻肟钠对斑马鱼SOD活性、MDA含量及DNA损伤的影响[J]. 环境科学学报, 2015, 35(8):2626-2632

    Shen H Y, Jiao X H, Wu T. Effects of cefotaxime sodium on SOD activity, MDA content and DNA damage in zebrafish[J]. Acta Scientiae Circumstantiae, 2015, 35(8):2626-2632(in Chinese)

    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410
    Wang H Z, Zhang X L, Wang L P, et al. Biochemical responses and DNA damage induced by herbicide QYR301 in earthworm (Eisenia fetida)[J]. Chemosphere, 2020, 244:125512
    郑丽萍, 冯艳红, 赵欣, 等. 氯丹和灭蚁灵污染场地土壤对蚯蚓的毒性效应研究[J]. 农业环境科学学报, 2010, 29(10):1924-1929

    Zheng L P, Feng Y H, Zhao X, et al. Toxicity effects of chlordane and mirex contaminated soil on earthworm (Eisenia foetida)[J]. Journal of Agro-Environment Science, 2010, 29(10):1924-1929(in Chinese)

    张薇, 宋玉芳, 孙铁珩, 等. 土壤低剂量芘污染对蚯蚓若干生化指标的影响[J]. 应用生态学报, 2007, 18(9):2097-2103

    Zhang W, Song Y F, Sun T H, et al. Effects of low dosage pyrene pollution on biochemical characters of earthworm (Eisenia fetida) in soil[J]. Chinese Journal of Applied Ecology, 2007, 18(9):2097-2103(in Chinese)

    姜锦林, 单正军, 周军英, 等. 常用农药对赤子爱胜蚓急性毒性和抗氧化酶系的影响[J]. 农业环境科学学报, 2017, 36(3):466-473

    Jiang J L, Shan Z J, Zhou J Y, et al. Influence of commonly used pesticides on acute toxicity to earthworm Eisenia fetida and alteration of antioxidant enzyme activities[J]. Journal of Agro-Environment Science, 2017, 36(3):466-473(in Chinese)

    Meng X J, Li F, Wang X Q, et al. Toxicological effects of graphene on mussel Mytilus galloprovincialis hemocytes after individual and combined exposure with triphenyl phosphate[J]. Marine Pollution Bulletin, 2020, 151:110838
    Ou Z J, Li J H. The geochemically-analogous process of metal recovery from second-hand resources via mechanochemistry:An atom-economic case study and its implications[J]. Waste Management, 2016, 57:57-63
    Wang Z F, Cui Z J, Liu L, et al. Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil:Effects of arsenic species[J]. Chemosphere, 2016, 154:161-170
    王民生. 碱性单细胞微量凝胶电泳测试技术简介[J]. 癌变·畸变·突变, 1996, 8(2):112-115
    Chen H Y, Wang P P, Du Z K, et al. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1, 3-dichloro-2-propyl) phosphate[J]. Aquatic Toxicology, 2018, 194:37-45
    Yan S H, Wang Q, Yang L H, et al. Comparison of the toxicity effects of tris(1, 3-dichloro-2-propyl)phosphate (TDCIPP) with tributyl phosphate (TNBP) reveals the mechanism of the apoptosis pathway in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Science & Technology, 2020, 54(11):6850-6858
    Chen R, Hou R, Hong X S, et al. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo:A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics[J]. Environment International, 2019, 130:104914
    郑晓奇, 史雅娟, 吕永龙, 等. 全氟辛烷磺酸对赤子爱胜蚓的抗氧化酶、代谢酶和DNA损伤的影响[J]. 环境科学学报, 2013, 33(11):3153-3159

    Zheng X Q, Shi Y J, Lv Y L, et al. Effects of perfluorooctane sulfonate on antioxidant and metabolic enzymes and DNA damage of earthworms (Eisenia fetida)[J]. Acta Scientiae Circumstantiae, 2013, 33(11):3153-3159(in Chinese)

    平令文, 李现旭, 张翠, 等. DEP对蚯蚓抗氧化酶系的影响及DNA损伤[J]. 环境科学, 2018, 39(10):4825-4833

    Ping L W, Li X X, Zhang C, et al. Oxidative stress and DNA damage induced by DEP exposure in earthworms[J]. Environmental Science, 2018, 39(10):4825-4833(in Chinese)

    Lu S Y, Li Y X, Zhang T, et al. Effect of E-waste recycling on urinary metabolites of organophosphate flame retardants and plasticizers and their association with oxidative stress[J]. Environmental Science & Technology, 2017, 51(4):2427-2437
    袭著革, 李官贤, 孙咏梅, 等. 烹调油烟雾诱导核酸氧化损伤及其标志物8-羟基脱氧鸟苷的形成机制[J]. 环境与健康杂志, 2003, 20(5):259-262

    Xi Z G, Li G X, Sun Y M, et al. Oxidative damage of DNA and formation of its biomarker 8-hydroxydeoxyguanosine induced by heated cooking oil vapors[J]. Journal of Environment and Health, 2003, 20(5):259-262(in Chinese)

    Eaton D L, Daroff R B, Autrup H, et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment[J]. Critical Reviews in Toxicology, 2008, 38(Supl.2):1-125
    Tilton F A, Bammler T K, Gallagher E P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2011, 153(1):9-16
    Sun L W, Xu W B, Peng T, et al. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity[J]. Neurotoxicology and Teratology, 2016, 55:16-22
    顾杰, 吴江, 王宏烨, 等. 有机磷酸酯对斑马鱼的早期神经毒性作用研究[J]. 生态毒理学报, 2019, 14(5):152-158

    Gu J, Wu J, Wang H Y, et al. Neurotoxicity of organophosphate esters on the early life stages of zebrafish[J]. Asian Journal of Ecotoxicology, 2019, 14(5):152-158(in Chinese)

    Jiang X F, Yang Y, Liu P, et al. Transcriptomics and metabolomics reveal Ca2+ overload and osmotic imbalance-induced neurotoxicity in earthworms (Eisenia fetida) under tri-n-butyl phosphate exposure[J]. Science of the Total Environment, 2020, 748:142169
  • 加载中
计量
  • 文章访问数:  2368
  • HTML全文浏览数:  2368
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-06

磷酸三正丁酯对蚯蚓的生态毒性效应

    通讯作者: 李梅, E-mail: meili@nju.edu.cn
    作者简介: 王倩(1997-),女,硕士研究生,研究方向为环境毒理学,E-mail:1970208324@qq.com
  • 1. 南京大学环境学院, 污染控制与资源化研究国家重点实验室, 南京 210023;
  • 2. 南京农业大学资源与环境科学学院, 南京 210095;
  • 3. 南京大学环境学院, 环境科学与工程国家级实验教学示范中心, 南京 210023
基金项目:

国家自然科学基金资助项目(41571468,41773115);江苏省科技支撑项目(BE2016736)

摘要: 有机磷酸酯(OPEs)作为一种新型的阻燃剂和增塑剂,在环境中普遍存在,尤其在土壤中常被检出,因此其环境和健康风险亟待评估。为探究OPEs对土壤生物的毒性效应,选取磷酸三正丁酯(TnBP)作为受试物,以赤子爱胜蚓(Eisenia fetida)为指示生物,采用人工土壤法研究不同浓度TnBP对蚯蚓生长、抗氧化酶系统、乙酰胆碱酯酶(AChE)活性、体腔细胞DNA损伤及8-羟基脱氧鸟苷(8-OHdG)含量的影响。结果表明,TnBP暴露对蚯蚓生长无明显抑制作用,但TnBP胁迫可引起蚯蚓体内抗氧化酶活性增强,脂质过氧化产物丙二醛含量显著上升,表明蚯蚓受到氧化损伤;彗星试验结果显示,彗尾DNA含量和Olive尾矩均显著上升,表明TnBP暴露能够引起蚯蚓体腔细胞DNA损伤;8-OHdG含量也显著增加,其水平与暴露浓度存在明显的剂量-效应关系,提示TnBP暴露可引起蚯蚓体腔细胞氧化性DNA损伤;AChE活性受到的影响则较为微弱。综上,本研究阐明了TnBP暴露对蚯蚓的毒性效应并为进一步研究OPEs对土壤的生态风险评估提供科学依据。

English Abstract

参考文献 (60)

目录

/

返回文章
返回