磷酸三正丁酯对蚯蚓的生态毒性效应
Toxic Effects of Tri-n-butyl Phosphate on Earthworm Eisenia fetida
-
摘要: 有机磷酸酯(OPEs)作为一种新型的阻燃剂和增塑剂,在环境中普遍存在,尤其在土壤中常被检出,因此其环境和健康风险亟待评估。为探究OPEs对土壤生物的毒性效应,选取磷酸三正丁酯(TnBP)作为受试物,以赤子爱胜蚓(Eisenia fetida)为指示生物,采用人工土壤法研究不同浓度TnBP对蚯蚓生长、抗氧化酶系统、乙酰胆碱酯酶(AChE)活性、体腔细胞DNA损伤及8-羟基脱氧鸟苷(8-OHdG)含量的影响。结果表明,TnBP暴露对蚯蚓生长无明显抑制作用,但TnBP胁迫可引起蚯蚓体内抗氧化酶活性增强,脂质过氧化产物丙二醛含量显著上升,表明蚯蚓受到氧化损伤;彗星试验结果显示,彗尾DNA含量和Olive尾矩均显著上升,表明TnBP暴露能够引起蚯蚓体腔细胞DNA损伤;8-OHdG含量也显著增加,其水平与暴露浓度存在明显的剂量-效应关系,提示TnBP暴露可引起蚯蚓体腔细胞氧化性DNA损伤;AChE活性受到的影响则较为微弱。综上,本研究阐明了TnBP暴露对蚯蚓的毒性效应并为进一步研究OPEs对土壤的生态风险评估提供科学依据。Abstract: As a group of emerging flame retardants and plasticizers, organophosphate esters (OPEs) are ubiquitous in the environment, especially in soil, therefore, their environmental and health risks need to be assessed urgently. To evaluate the potential toxicity of OPEs to soil ecosystem, we investigated the effects of different concentrations of tri-n-butyl phosphate (TnBP) on earthworms (Eisenia fetida) in artificial soil. The growth rate, activities of antioxidase system and acetylcholinesterase (AChE), levels of malondialdehyde (MDA), DNA damage as well as its products 8-hydroxydeoxyguanosine (8-OHdG) content were measured after exposure to 0, 0.1, and 1 mg·kg-1 TnBP in the artificial soil for 3, 7, and 14 days. The results showed that 14-day exposure of TnBP did not significantly inhibit the growth of E. fetida, while the antioxidant enzymes activity and MDA content significantly increased, indicating that TnBP could induce oxidative damage in earthworm. Comet assay showed that both the tail DNA content and the Olive tail moment values in all treated groups were significantly higher than those in the control group. Furthermore, the presence of TnBP also induced the increase of 8-OHdG and exhibited a concentration-related response, suggesting that TnBP-induced DNA damage might be attributed to oxidative DNA lesions. The impacts of TnBP on AChE activity were relatively weak. In conclusion, this study demonstrated that TnBP had biochemical toxicity on earthworms, which sheds light on the toxicological effects of TnBP on earthworms and provides a scientific basis for further study of OPEs on soil ecological risk assessment.
-
Key words:
- TnBP /
- Eisenia fetida /
- oxidative stress /
- DNA damage /
- soil ecological risk
-
Hou R, Xu Y P, Wang Z J. Review of OPFRs in animals and humans:Absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere, 2016, 153:78-90 Chen G L, Jin Y X, Wu Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption[J]. Environmental Toxicology and Pharmacology, 2015, 40(1):310-318 Cui K Y, Wen J X, Zeng F, et al. Occurrence and distribution of organophosphate esters in urban soils of the subtropical City, Guangzhou, China[J]. Chemosphere, 2017, 175:514-520 Wang X Q, Meng X J, Li F, et al. The critical factors affecting typical organophosphate flame retardants to mimetic biomembrane:An integrated in vitro and in silico study[J]. Chemosphere, 2019, 226:159-165 Someya M, Suzuki G, Ionas A C, et al. Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam[J]. Emerging Contaminants, 2016, 2(2):58-65 Cequier E, Marcé R M, Becher G, et al. A high-throughput method for determination of metabolites of organophosphate flame retardants in urine by ultra performance liquid chromatography-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2014, 845:98-104 Bollmann U E, Möller A, Xie Z Y, et al. Occurrence and fate of organophosphorus flame retardants and plasticizers in coastal and marine surface waters[J]. Water Research, 2012, 46(2):531-538 Yang F X, Ding J J, Huang W, et al. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter[J]. Environmental Science & Technology, 2014, 48(1):63-70 Wang Q W, Lam J C W, Man Y C, et al. Bioconcentration, metabolism and neurotoxicity of the organophorous flame retardant 1, 3-dichloro 2-propyl phosphate (TDCPP) to zebrafish[J]. Aquatic Toxicology, 2015, 158:108-115 Cao S X, Zeng X Y, Song H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China[J]. Environmental Toxicology and Chemistry, 2012, 31(7):1478-1484 Wei G L, Li D Q, Zhuo M N, et al. Organophosphorus flame retardants and plasticizers:Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196:29-46 Gao X Z, Xu Y P, Ma M, et al. Distribution, sources and transport of organophosphorus flame retardants in the water and sediment of Ny-Alesund, Svalbard, the Arctic[J]. Environmental Pollution, 2020, 264:114792 高小中, 许宜平, 王子健. 有机磷酸酯阻燃剂的环境暴露与迁移转化研究进展[J]. 生态毒理学报, 2015, 10(2):56-68 Gao X Z, Xu Y P, Wang Z J. Progress in environment exposure, transport and transform of organophosphorus flame retardants[J]. Asian Journal of Ecotoxicology, 2015, 10(2):56-68(in Chinese)
Yang J W, Zhao Y Y, Li M H, et al. A review of a class of emerging contaminants:The classification, distribution, intensity of consumption, synthesis routes, environmental effects and expectation of pollution abatement to organophosphate flame retardants (OPFRs)[J]. International Journal of Molecular Sciences, 2019, 20(12):E2874 Chen Y Y, Chen Y J, Zhang Y H, et al. Determination of HFRs and OPFRs in PM2.5 by ultrasonic-assisted extraction combined with multi-segment column purification and GC-MS/MS[J]. Talanta, 2019, 194:320-328 Wang Q Z, Zhao H X, Xu L, et al. Uptake and translocation of organophosphate flame retardants (OPFRs) by hydroponically grown wheat (Triticum aestivum L.)[J]. Ecotoxicology and Environmental Safety, 2019, 174:683-689 Meeker J D, Stapleton H M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters[J]. Environmental Health Perspectives, 2010, 118(3):318-323 许宜平, 王子健, 陈睿, 等. 有机磷酸酯的暴露、毒性机制及环境风险评估[M]. 北京:科学出版社, 2019:5 Zhong M Y, Wu H F, Mi W Y, et al. Occurrences and distribution characteristics of organophosphate ester flame retardants and plasticizers in the sediments of the Bohai and Yellow Seas, China[J]. Science of the Total Environment, 2018, 615:1305-1311 He C, Wang X Y, Tang S Y, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia:Is dietary exposure an important pathway of organophosphate esters and their metabolites?[J]. Environmental Science & Technology, 2018, 52(21):12765-12773 Greaves A K, Su G Y, Letcher R J. Environmentally relevant organophosphate triesters in herring gulls:In vitro biotransformation and kinetics and diester metabolite formation using a hepatic microsomal assay[J]. Toxicology and Applied Pharmacology, 2016, 308:59-65 Aznar-Alemany , Aminot Y, Vilà-Cano J, et al. Halogenated and organophosphorus flame retardants in European aquaculture samples[J]. Science of the Total Environment, 2018, 612:492-500 Hou R, Huang C, Rao K F, et al. Characterized in vitro metabolism kinetics of alkyl organophosphate esters in fish liver and intestinal microsomes[J]. Environmental Science & Technology, 2018, 52(5):3202-3210 United States Environmental Protection Agency (US EPA). HPV Chemical Hazard Characterizations 2014[R]. Washington DC:US EPA, 2014 van der Veen I, de Boer J. Phosphorus flame retardants:Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119-1153 Luo Q, Gu L Y, Wu Z P, et al. Distribution, source apportionment and ecological risks of organophosphate esters in surface sediments from the Liao River, Northeast China[J]. Chemosphere, 2020, 250:126297 邓旭, 印红玲, 何婉玲, 等. 有机磷酸酯在成都市市/郊区剖面土壤及农作物中的分布及迁移[J]. 环境化学, 2019, 38(3):679-685 Deng X, Yin H L, He W L, et al. Distribution and migration of OPEs in soil profile and crops in urban and suburban areas of Chengdu[J]. Environmental Chemistry, 2019, 38(3):679-685(in Chinese)
He M J, Yang T, Yang Z H, et al. Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing, China:Implications for human exposure[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(3):349-361 Wang Y, Li Z Y, Tan F, et al. Occurrence and air-soil exchange of organophosphate flame retardants in the air and soil of Dalian, China[J]. Environmental Pollution, 2020, 265:114850 Yan S H, Wu H M, Qin J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Pollution, 2017, 225:559-568 Hou R, Yuan S W, Feng C L, et al. Toxicokinetic patterns, metabolites formation and distribution in various tissues of the Chinese rare minnow (Gobiocypris rarus) exposed to tri(2-butoxyethyl) phosphate (TBOEP) and tri-n-butyl phosphate (TNBP)[J]. Science of the Total Environment, 2019, 668:806-814 高丹, 同帜, 张圣虎, 等. 4种典型有机磷阻燃剂对斑马鱼胚胎毒性及风险评价[J]. 生态与农村环境学报, 2017, 33(9):836-844 Gao D, Tong Z, Zhang S H, et al. Toxicity of four typical organic phosphorus flame retardants to zebrafish embryo and risk assessment[J]. Journal of Ecology and Rural Environment, 2017, 33(9):836-844(in Chinese)
Asensio V, Rodríguez-Ruiz A, Garmendia L, et al. Towards an integrative soil health assessment strategy:A three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution[J]. Science of the Total Environment, 2013, 442:344-365 Organization for Economic Cooperation and Development (OECD). Test No. 207:Earthworm, acute toxicity tests[R]. Paris:OECD, 1984 Eyambe G S, Goven A J, Fitzpatrick L C, et al. A non-invasive technique for sequential collection of earthworm (Lumbricus terrestris) leukocytes during subchronic immunotoxicity studies[J]. Laboratory Animals, 1991, 25(1):61-67 Yang Y, Xiao Y, Chang Y Q, et al. Intestinal damage, neurotoxicity and biochemical responses caused by tris(2-chloroethyl) phosphate and tricresyl phosphate on earthworm[J]. Ecotoxicology and Environmental Safety, 2018, 158:78-86 Kelly K A, Havrilla C M, Brady T C, et al. Oxidative stress in toxicology:Established mammalian and emerging piscine model systems[J]. Environmental Health Perspectives, 1998, 106(7):375-384 刘文军, 高健鹏, 王冠颖, 等. DEHP对土壤蚯蚓氧化胁迫及DNA损伤的研究[J]. 土壤学报, 2017, 54(5):1170-1180 Liu W J, Gao J P, Wang G Y, et al. Oxidating stress and DNA damage of DEHP to soil earthworms[J]. Acta Pedologica Sinica, 2017, 54(5):1170-1180(in Chinese)
沈洪艳, 焦晓会, 武彤. 头孢噻肟钠对斑马鱼SOD活性、MDA含量及DNA损伤的影响[J]. 环境科学学报, 2015, 35(8):2626-2632 Shen H Y, Jiao X H, Wu T. Effects of cefotaxime sodium on SOD activity, MDA content and DNA damage in zebrafish[J]. Acta Scientiae Circumstantiae, 2015, 35(8):2626-2632(in Chinese)
Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7(9):405-410 Wang H Z, Zhang X L, Wang L P, et al. Biochemical responses and DNA damage induced by herbicide QYR301 in earthworm (Eisenia fetida)[J]. Chemosphere, 2020, 244:125512 郑丽萍, 冯艳红, 赵欣, 等. 氯丹和灭蚁灵污染场地土壤对蚯蚓的毒性效应研究[J]. 农业环境科学学报, 2010, 29(10):1924-1929 Zheng L P, Feng Y H, Zhao X, et al. Toxicity effects of chlordane and mirex contaminated soil on earthworm (Eisenia foetida)[J]. Journal of Agro-Environment Science, 2010, 29(10):1924-1929(in Chinese)
张薇, 宋玉芳, 孙铁珩, 等. 土壤低剂量芘污染对蚯蚓若干生化指标的影响[J]. 应用生态学报, 2007, 18(9):2097-2103 Zhang W, Song Y F, Sun T H, et al. Effects of low dosage pyrene pollution on biochemical characters of earthworm (Eisenia fetida) in soil[J]. Chinese Journal of Applied Ecology, 2007, 18(9):2097-2103(in Chinese)
姜锦林, 单正军, 周军英, 等. 常用农药对赤子爱胜蚓急性毒性和抗氧化酶系的影响[J]. 农业环境科学学报, 2017, 36(3):466-473 Jiang J L, Shan Z J, Zhou J Y, et al. Influence of commonly used pesticides on acute toxicity to earthworm Eisenia fetida and alteration of antioxidant enzyme activities[J]. Journal of Agro-Environment Science, 2017, 36(3):466-473(in Chinese)
Meng X J, Li F, Wang X Q, et al. Toxicological effects of graphene on mussel Mytilus galloprovincialis hemocytes after individual and combined exposure with triphenyl phosphate[J]. Marine Pollution Bulletin, 2020, 151:110838 Ou Z J, Li J H. The geochemically-analogous process of metal recovery from second-hand resources via mechanochemistry:An atom-economic case study and its implications[J]. Waste Management, 2016, 57:57-63 Wang Z F, Cui Z J, Liu L, et al. Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil:Effects of arsenic species[J]. Chemosphere, 2016, 154:161-170 王民生. 碱性单细胞微量凝胶电泳测试技术简介[J]. 癌变·畸变·突变, 1996, 8(2):112-115 Chen H Y, Wang P P, Du Z K, et al. Oxidative stress, cell cycle arrest, DNA damage and apoptosis in adult zebrafish (Danio rerio) induced by tris(1, 3-dichloro-2-propyl) phosphate[J]. Aquatic Toxicology, 2018, 194:37-45 Yan S H, Wang Q, Yang L H, et al. Comparison of the toxicity effects of tris(1, 3-dichloro-2-propyl)phosphate (TDCIPP) with tributyl phosphate (TNBP) reveals the mechanism of the apoptosis pathway in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Science & Technology, 2020, 54(11):6850-6858 Chen R, Hou R, Hong X S, et al. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo:A survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics[J]. Environment International, 2019, 130:104914 郑晓奇, 史雅娟, 吕永龙, 等. 全氟辛烷磺酸对赤子爱胜蚓的抗氧化酶、代谢酶和DNA损伤的影响[J]. 环境科学学报, 2013, 33(11):3153-3159 Zheng X Q, Shi Y J, Lv Y L, et al. Effects of perfluorooctane sulfonate on antioxidant and metabolic enzymes and DNA damage of earthworms (Eisenia fetida)[J]. Acta Scientiae Circumstantiae, 2013, 33(11):3153-3159(in Chinese)
平令文, 李现旭, 张翠, 等. DEP对蚯蚓抗氧化酶系的影响及DNA损伤[J]. 环境科学, 2018, 39(10):4825-4833 Ping L W, Li X X, Zhang C, et al. Oxidative stress and DNA damage induced by DEP exposure in earthworms[J]. Environmental Science, 2018, 39(10):4825-4833(in Chinese)
Lu S Y, Li Y X, Zhang T, et al. Effect of E-waste recycling on urinary metabolites of organophosphate flame retardants and plasticizers and their association with oxidative stress[J]. Environmental Science & Technology, 2017, 51(4):2427-2437 袭著革, 李官贤, 孙咏梅, 等. 烹调油烟雾诱导核酸氧化损伤及其标志物8-羟基脱氧鸟苷的形成机制[J]. 环境与健康杂志, 2003, 20(5):259-262 Xi Z G, Li G X, Sun Y M, et al. Oxidative damage of DNA and formation of its biomarker 8-hydroxydeoxyguanosine induced by heated cooking oil vapors[J]. Journal of Environment and Health, 2003, 20(5):259-262(in Chinese)
Eaton D L, Daroff R B, Autrup H, et al. Review of the toxicology of chlorpyrifos with an emphasis on human exposure and neurodevelopment[J]. Critical Reviews in Toxicology, 2008, 38(Supl.2):1-125 Tilton F A, Bammler T K, Gallagher E P. Swimming impairment and acetylcholinesterase inhibition in zebrafish exposed to copper or chlorpyrifos separately, or as mixtures[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2011, 153(1):9-16 Sun L W, Xu W B, Peng T, et al. Developmental exposure of zebrafish larvae to organophosphate flame retardants causes neurotoxicity[J]. Neurotoxicology and Teratology, 2016, 55:16-22 顾杰, 吴江, 王宏烨, 等. 有机磷酸酯对斑马鱼的早期神经毒性作用研究[J]. 生态毒理学报, 2019, 14(5):152-158 Gu J, Wu J, Wang H Y, et al. Neurotoxicity of organophosphate esters on the early life stages of zebrafish[J]. Asian Journal of Ecotoxicology, 2019, 14(5):152-158(in Chinese)
Jiang X F, Yang Y, Liu P, et al. Transcriptomics and metabolomics reveal Ca2+ overload and osmotic imbalance-induced neurotoxicity in earthworms (Eisenia fetida) under tri-n-butyl phosphate exposure[J]. Science of the Total Environment, 2020, 748:142169
计量
- 文章访问数: 2368
- HTML全文浏览数: 2368
- PDF下载数: 88
- 施引文献: 0