信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展

杨雨桐, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展[J]. 生态毒理学报, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002
引用本文: 杨雨桐, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展[J]. 生态毒理学报, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002
Yang Yutong, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Mechanism of Pheromone-responsive Plasmids Mediated Resistance Genes Conjugation Transfer in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002
Citation: Yang Yutong, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Mechanism of Pheromone-responsive Plasmids Mediated Resistance Genes Conjugation Transfer in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002

信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展

    作者简介: 杨雨桐(1995-),女,硕士研究生,研究方向为耐药基因转移,E-mail:yangyutong0223@163.com; sense0011@163.com
    通讯作者: 邱志刚, E-mail: zhigangqiu99@gmail.com
  • 基金项目:

    国家自然科学基金面上项目(42177414);天津市自然科学基金重点项目(17JCZDJC39100)

  • 中图分类号: X171.5

Mechanism of Pheromone-responsive Plasmids Mediated Resistance Genes Conjugation Transfer in Enterococcus faecalis

    Corresponding author: Qiu Zhigang, zhigangqiu99@gmail.com
  • Fund Project:
  • 摘要: 粪肠球菌是一种在自然环境中广泛存在的革兰氏阳性细菌。由于其特殊的耐药机制及高频率的耐药基因转移方式,导致了环境中耐药粪肠球菌的广泛传播,生态安全形势严峻。其中,信息素应答质粒介导的粪肠球菌耐药基因的接合转移是造成粪肠球菌耐药基因快速扩散的重要方式。本文回顾了近些年关于信息素应答质粒接合转移的研究成果,分析总结了接合转移的必要条件、正负调控信息素对接合转移的调节作用,并以携带四环素抗性的质粒pCF10为例简要探讨了接合转移相关基因、蛋白的调控机制,旨在更加全面地揭示粪肠球菌的耐药基因传播机制,为耐药细菌的基因转移机制研究提供参考。
  • 加载中
  • Madsen K T, Skov M N, Gill S, et al. Virulence factors associated with Enterococcus faecalis infective endocarditis:A mini review[J]. The Open Microbiology Journal, 2017, 11:1-11
    Reigadas E, Rodríguez-Creixems M, Guembe M, et al. Catheter-related bloodstream infection caused by Enterococcus spp.[J]. Clinical Microbiology and Infection, 2013, 19(5):457-461
    陈亚楠, 王亚炜, 魏源送, 等. 不同功能地表水体中病原微生物指示物的标准比较[J]. 环境科学学报, 2015, 35(2):337-351

    Chen Y N, Wang Y W, Wei Y S, et al. Evolution and standard comparison of indicator microorganisms for different surface waters[J]. Acta Scientiae Circumstantiae, 2015, 35(2):337-351(in Chinese)

    Alipour M, Hajiesmaili R, Talebjannat M, et al. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran[J]. The Scientific World Journal, 2014, 2014:1-5
    李昕, 曾洁, 王岱, 等. 细菌耐药耐受性机制的最新研究进展[J]. 中国抗生素杂志, 2020, 45(2):113-121

    Li X, Zeng J, Wang D, et al. Recent advances in the mechanism of bacterial resistance and tolerance[J]. Chinese Journal of Antibiotics, 2020, 45(2):113-121(in Chinese)

    Hollenbeck B L, Rice L B. Intrinsic and acquired resistance mechanisms in Enterococcus[J]. Virulence, 2012, 3(5):421-569
    俞道进, 曾振灵, 陈杖榴. 四环素类抗生素残留对水生态环境影响的研究进展[J]. 中国兽医学报, 2004, 24(5):515-517
    Clewell D B, Victoria Francia M, Flannagan S E, et al. Enterococcal plasmid transfer:Sex pheromones, transfer origins, relaxases, and the Staphylococcus aureus issue[J]. Plasmid, 2002, 48(3):193-201
    Wozniak R A F, Waldor M K. Integrative and conjugative elements:Mosaic mobile genetic elements enabling dynamic lateral gene flow[J]. Nature Reviews Microbiology, 2010, 8(8):552-563
    Smillie C, Garcillán-Barcia M P, Francia M V, et al. Mobility of plasmids[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3):434-452
    Partridge S R. Analysis of antibiotic resistance regions in Gram-negative bacteria[J]. FEMS Microbiology Reviews, 2011, 35(5):820-855
    Wardal E, Gawryszewska I, Hryniewicz W, et al. Abundance and diversity of plasmid-associated genes among clinical isolates of Enterococcus faecalis[J]. Plasmid, 2013, 70(3):329-342
    Waters C M, Bassler B L. Quorum sensing:Cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology, 2005, 21:319-346
    Wardal E, Sadowy E, Hryniewicz W. Complex nature of enterococcal pheromone-responsive plasmids[J]. Polish Journal of Microbiology, 2010, 59(2):79-87
    Inoue D, Sei K, Soda S, et al. Potential of predominant activated sludge bacteria as recipients in conjugative plasmid transfer[J]. Journal of Bioscience and Bioengineering, 2005, 100(6):600-605
    易秀丽, 俞道进, 黄一帆. 3种不同水源粪肠球菌耐药情况[J]. 福建农林大学学报:自然科学版, 2008, 37(1):92-95

    Yi X L, Yu D J, Huang Y F. Drug resistance of Enterococcus faecalis in 3 different aquatic environments[J]. Journal of Fujian Agriculture and Forestry University:Natural Science Edition, 2008, 37(1):92-95(in Chinese)

    吴丽云, 洪娟, 孙彤, 等. 水源性肠球菌对苯扎溴铵及部分抗菌药的耐药性研究[J]. 中国兽医科学, 2018, 48(11):1406-1414

    Wu L Y, Hong J, Sun T, et al. Study on resistance of water-borne Enterococcus to benzalkonium bromide and antibiotics[J]. Chinese Veterinary Science, 2018, 48(11):1406-1414(in Chinese)

    陈玉红, 肖正润, 林福, 等. 闽江流域水源性肠球菌抗生素耐药与水体氮磷营养盐的相关性研究[C]//中国畜牧兽医学会兽医药理毒理学分会第十一届会员代表大会暨第十三次学术讨论会与中国毒理学会兽医毒理专业委员会第五次学术研讨会论文集. 长沙:中国畜牧兽医学会, 2015:221-222
    林云琴, 曾中华, 陈如登. 猪场水源水及管网水肠球菌耐药特性差异研究[J]. 江西农业学报, 2017, 29(8):99-104

    Lin Y Q, Zeng Z H, Chen R D. Difference study on antibiotic-resistant characters of Enterococcus from original water and pipe-network water of pig farms[J]. Acta Agriculturae Jiangxi, 2017, 29(8):99-104(in Chinese)

    Carniol K, Gilmore M S. Signal transduction, quorum-sensing, and extracellular protease activity in Enterococcus faecalis biofilm formation[J]. Journal of Bacteriology, 2004, 186(24):8161-8163
    Torres O R, Korman R Z, Zahler S A, et al. The conjugative transposon Tn925:Enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in Bacillus subtilis and E. faecalis[J]. Molecular and General Genetics, 1991, 225(3):395-400
    Clewell D B. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin[J]. Plasmid, 2007, 58(3):205-227
    de Boever E H, Clewell D B, Fraser C M. Enterococcus faecalis conjugative plasmid pAM373:Complete nucleotide sequence and genetic analyses of sex pheromone response[J]. Molecular Microbiology, 2000, 37(6):1327-1341
    Showsh S A, de Boever E H, Clewell D B. Vancomycin resistance plasmid in Enterococcus faecalis that encodes sensitivity to a sex pheromone also produced by Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2001, 45(7):2177-2178
    Clewell D B. Movable genetic elements and antibiotic resistance in Enterococci[J]. European Journal of Clinical Microbiology and Infectious Diseases, 1990, 9(2):90-102
    Johnson C M, Haemig H H A, Chatterjee A, et al. RNA-mediated reciprocal regulation between two bacterial operons is RNase Ⅲ dependent[J]. mBio, 2011, 2(5):DOI:10.1128/mbio.00189-11
    Shokeen S, Johnson C M, Greenfield T J, et al. Structural analysis of the Anti-Q-Qs interaction:RNA-mediated regulation of E. faecalis plasmid pCF10 conjugation[J]. Plasmid, 2010, 64(1):26-35
    Johnson C M, Manias D A, Haemig H A H, et al. Direct evidence for control of the pheromone-inducible prgQ operon of Enterococcus faecalis plasmid pCF10 by a countertranscript-driven attenuation mechanism[J]. Journal of Bacteriology, 2010, 192(6):1634-1642
    Ozawa Y, Boever E H D, Clewell D B. Enterococcus faecalis sex pheromone plasmid pAM373:Analyses of TraA and evidence for its interaction with RpoB[J]. Plasmid, 2005, 54(1):57-69
    do Carmo de Freire Bastos M, Tomita H, Tanimoto K, et al. Regulation of the Enterococcus faecalis pAD1-related sex pheromone response:Analyses of traD expression and its role in controlling conjugation functions[J]. Molecular Microbiology, 1998, 30(2):381-392
    Dunny G M. Enterococcal sex pheromones:Signaling, social behavior, and evolution[J]. Annual Review of Genetics, 2013, 47:457-482
    Bandyopadhyay A, O'Brien S, Frank K L, et al. Antagonistic donor density effect conserved in multiple enterococcal conjugative plasmids[J]. Applied and Environmental Microbiology, 2016, 82(15):4537-4545
    Price V J, Huo W W, Sharifi A, et al. CRISPR-cas and restriction-modification act additively against conjugative antibiotic resistance plasmid transfer in Enterococcus faecalis[J]. mSphere, 2016, 1(3):DOI:10.1128/msphere.00064-16
    Hirt H, Manias D A, Bryan E M, et al. Characterization of the pheromone response of the Enterococcus faecalis conjugative plasmid pCF10:Complete sequence and comparative analysis of the transcriptional and phenotypic responses of pCF10-containing cells to pheromone induction[J]. Journal of Bacteriology, 2005, 187(3):1044-1054
    Kreft B, Marre R, Schramm U, et al. Aggregation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells[J]. Infection and Immunity, 1992, 60(1):25-30
    Dunny G M, Brown B L, Clewell D B. Induced cell aggregation and mating in Streptococcus faecalis:Evidence for a bacterial sex pheromone[J]. PNAS, 1978, 75(7):3479-3483
    Varahan S, Harms N, Gilmore M S, et al. An ABC transporter is required for secretion of peptide sex pheromones in Enterococcus faecalis[J]. mBio, 2014, 5(5):DOI:10.1128/mbio.01726-14
    Olmsted S B, Kao S M, van Putte L J, et al. Role of the pheromone-inducible surface protein Asc10 in mating aggregate formation and conjugal transfer of the Enterococcus faecalis plasmid pCF10[J]. Journal of Bacteriology, 1991, 173(23):7665-7672
    Clewell D B. Tales of conjugation and sex pheromones:A plasmid and enterococcal odyssey[J]. Mobile Genetic Elements, 2011, 1(1):38-54
    Dunny G M, Leonard B A B. Cell-cell communication in Gram-positive bacteria[J]. Annual Review of Microbiology, 1997, 51(1):527-564
    Mori M, Sakagami Y, Ishii Y, et al. Structure of cCF10, a peptide sex pheromone which induces conjugative transfer of the Streptococcus faecalis tetracycline resistance plasmid, pCF10[J]. The Journal of Biological Chemistry, 1988, 263(28):14574-14578
    Hirt H, Schlievert P M, Dunny G M. In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10[J]. Infection and Immunity, 2002, 70(2):716-723
    Nakayama J, Ono Y, Suzuki A. Isolation and structure of the sex pheromone inhibitor, iAM373, of Enterococcus faecalis[J]. Bioscience, Biotechnology, and Biochemistry, 1995, 59(7):1358-1359
    Flannagan S E, Clewell D B. Identification and characterization of genes encoding sex pheromone cAM373 activity in Enterococcus faecalis and Staphylococcus aureus[J]. Molecular Microbiology, 2002, 44(3):803-817
    Clewell D B, Pontius L T, An F Y, et al. Nucleotide sequence of the sex pheromone inhibitor (iAD1) determinant of Enterococcus faecalis conjugative plasmid pAD1[J]. Plasmid, 1990, 24(2):156-161
    Mori M, Sakagami Y, Narita M, et al. Isolation and structure of the bacterial sex pheromone, cAD1, that induces plasmid transfer in Streptococcus faecalis[J]. FEBS Letters, 1984, 178(1):97-100
    Chatterjee A, Cook L C C, Shu C C, et al. Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer[J]. PNAS, 2013, 110(17):7086-7090
    Chen Y Q, Bandyopadhyay A, Kozlowicz B K, et al. Mechanisms of peptide sex pheromone regulation of conjugation in Enterococcus faecalis[J]. MicrobiologyOpen, 2017, 6(4):e00492
    Nakayama J, Ruhfel R E, Dunny G M, et al. The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10[J]. Journal of Bacteriology, 1994, 176(23):7405-7408
    Bae T, Kozlowicz B, Dunny G M. Two targets in pCF10 DNA for PrgX binding:Their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible conjugation[J]. Journal of Molecular Biology, 2002, 315(5):995-1007
    Bensing B A, Meyer B J, Dunny G M. Sensitive detection of bacterial transcription initiation sites and differentiation from RNA processing sites in the pheromone-induced plasmid transfer system of Enterococcus faecalis[J]. PNAS, 1996, 93(15):7794-7799
    Leonard B A, Podbielski A, Hedberg P J, et al. Enterococcus faecalis pheromone binding protein, PrgZ, recruits a chromosomal oligopeptide permease system to import sex pheromone cCF10 for induction of conjugation[J]. PNAS, 1996, 93(1):260-264
    Fixen K R, Chandler J R, Le T, et al. Analysis of the amino acid sequence specificity determinants of the enterococcal cCF10 sex pheromone in interactions with the pheromone-sensing machinery[J]. Journal of Bacteriology, 2007, 189(4):1399-1406
    Shi K, Brown C K, Gu Z Y, et al. Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis[J]. PNAS, 2005, 102(51):18596-18601
    Chandler J R, Flynn A R, Bryan E M, et al. Specific control of endogenous cCF10 pheromone by a conserved domain of the pCF10-encoded regulatory protein PrgY in Enterococcus faecalis[J]. Journal of Bacteriology, 2005, 187(14):4830-4843
    Bhatty M, Camacho M I, Gonzalez-Rivera C, et al. PrgU:A suppressor of sex pheromone toxicity in Enterococcus faecalis[J]. Molecular Microbiology, 2017, 103(3):398-412
    田英杰, 于慧, 王占黎. 耐万古霉素肠球菌耐药机制及毒力基因分布的研究进展[J]. 现代预防医学, 2018, 45(10):1895-1899

    Tian Y J, Yu H, Wang Z L. Advances in drug resistance mechanism and virulence gene distribution for vancomycin-resistant Enterococci[J]. Modern Preventive Medicine, 2018, 45(10):1895-1899(in Chinese)

    Qiu Z, Yu Y, Chen Z, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. PNAS, 2012, 109(13):4944-4949
    Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community[J]. Environmental Pollution, 2021, 268:115903
    Li D, Zeng S Y, He M, et al. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena[J]. Environmental Science & Technology, 2016, 50(6):3193-3201
  • 加载中
计量
  • 文章访问数:  5693
  • HTML全文浏览数:  5693
  • PDF下载数:  113
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-19
杨雨桐, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展[J]. 生态毒理学报, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002
引用本文: 杨雨桐, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展[J]. 生态毒理学报, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002
Yang Yutong, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Mechanism of Pheromone-responsive Plasmids Mediated Resistance Genes Conjugation Transfer in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002
Citation: Yang Yutong, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Mechanism of Pheromone-responsive Plasmids Mediated Resistance Genes Conjugation Transfer in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2021, 16(5): 160-167. doi: 10.7524/AJE.1673-5897.20201119002

信息素调控质粒介导的粪肠球菌耐药基因接合转移机制研究进展

    通讯作者: 邱志刚, E-mail: zhigangqiu99@gmail.com
    作者简介: 杨雨桐(1995-),女,硕士研究生,研究方向为耐药基因转移,E-mail:yangyutong0223@163.com; sense0011@163.com
  • 军事科学院军事医学研究院环境医学与作业医学研究所, 天津 300050
基金项目:

国家自然科学基金面上项目(42177414);天津市自然科学基金重点项目(17JCZDJC39100)

摘要: 粪肠球菌是一种在自然环境中广泛存在的革兰氏阳性细菌。由于其特殊的耐药机制及高频率的耐药基因转移方式,导致了环境中耐药粪肠球菌的广泛传播,生态安全形势严峻。其中,信息素应答质粒介导的粪肠球菌耐药基因的接合转移是造成粪肠球菌耐药基因快速扩散的重要方式。本文回顾了近些年关于信息素应答质粒接合转移的研究成果,分析总结了接合转移的必要条件、正负调控信息素对接合转移的调节作用,并以携带四环素抗性的质粒pCF10为例简要探讨了接合转移相关基因、蛋白的调控机制,旨在更加全面地揭示粪肠球菌的耐药基因传播机制,为耐药细菌的基因转移机制研究提供参考。

English Abstract

参考文献 (60)

返回顶部

目录

/

返回文章
返回