稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展

彭微, 程娇娇, 张凌燕, 殷慧, 孟颖, 罗利霞, 李淑荣, 孟佩俊. 稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 315-322. doi: 10.7524/AJE.1673-5897.20211012001
引用本文: 彭微, 程娇娇, 张凌燕, 殷慧, 孟颖, 罗利霞, 李淑荣, 孟佩俊. 稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展[J]. 生态毒理学报, 2022, 17(4): 315-322. doi: 10.7524/AJE.1673-5897.20211012001
Peng Wei, Cheng Jiaojiao, Zhang Lingyan, Yin Hui, Meng Ying, Luo Lixia, Li Shurong, Meng Peijun. Research Progress on Biological Toxicity and Its Mechanism of Rare-earth-elements-doped Upconversion Nanoparticles[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 315-322. doi: 10.7524/AJE.1673-5897.20211012001
Citation: Peng Wei, Cheng Jiaojiao, Zhang Lingyan, Yin Hui, Meng Ying, Luo Lixia, Li Shurong, Meng Peijun. Research Progress on Biological Toxicity and Its Mechanism of Rare-earth-elements-doped Upconversion Nanoparticles[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 315-322. doi: 10.7524/AJE.1673-5897.20211012001

稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展

    作者简介: 彭微(1997—),女,硕士研究生,研究方向为卫生检验学,E-mail:2848884955@qq.com
    通讯作者: 罗利霞, E-mail: luoluo_80@yeah.ne 李淑荣, E-mail: 21399333@qq.com 孟佩俊, E-mail: mengpeijun79@163.com
  • 基金项目:

    国家自然科学基金资助项目(81960601);内蒙古自治区自然科学基金资助项目(2021MS08055)

  • 中图分类号: X171.5

Research Progress on Biological Toxicity and Its Mechanism of Rare-earth-elements-doped Upconversion Nanoparticles

    Corresponding authors: Luo Lixia, luoluo_80@yeah.ne ;  Li Shurong, 21399333@qq.com ;  Meng Peijun, mengpeijun79@163.com
  • Fund Project:
  • 摘要: 稀土掺杂的上转换纳米材料(rare-earth-elements-doped upconversion nanoparticles,REEs-UCNPs)作为新兴一代的荧光纳米探针,具有独特而优异的反斯托克斯发光特点,与传统荧光材料相比,具有发光强度高、荧光寿命长、激发能量低、组织穿透能力强和生物相容性好等优点。近年来,REEs-UCNPs在生物医学、活体荧光成像、太阳能电池和卫生检测等领域应用日益广泛,其环境和人群暴露日益突出。随着纳米毒理学的深入研究,REEs-UCNPs的生物学毒性效应以及对环境和人类健康的影响逐渐被研究者关注,然而目前有关REEs-UCNPs的生物学毒性的报道较少。本文综述了近年来有关REEs-UCNPs在生物体内的吸收-分布-代谢-排泄、生物毒性、毒作用机制与影响因素等方面的研究进展,以期为REEs-UCNPs的进一步开发、应用和深入研究提供思路和参考依据。
  • 加载中
  • Würth C, Fischer S, Grauel B, et al. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(14):4922-4928
    Bloembergen N. Solid state infrared quantum counters[J]. Physical Review Letters, 1959, 2(3):84-85
    Yao J, Huang C, Liu C H, et al. Upconversion luminescence nanomaterials:A versatile platform for imaging, sensing, and therapy[J]. Talanta, 2020, 208:120157
    Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 2009, 38(4):976-989
    Zhu Y M, Xie A G, Li M, et al. Noninvasive photochemical sealing for Achilles tendon rupture by combination of upconversion nanoparticles and photochemical tissue bonding technology[J]. BioMed Research International, 2020, 2020:1753152
    Xu F, Sun Y, Gao H P, et al. High-performance perovskite solar cells based on NaCsWO3@NaYF4@NaYF4:Yb, Er upconversion nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(2):2674-2684
    Lei Z D, Ling X, Mei Q S, et al. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles[J]. Advanced Materials, 2020, 32(9):e1906225
    Rostami I. Empowering the emission of upconversion nanoparticles for precise subcellular imaging[J]. Nanomaterials, 2021, 11(6):1541
    Guryev E L, Smyshlyaeva A S, Shilyagina N Y, et al. UCNP-based photoluminescent nanomedicines for targeted imaging and theranostics of cancer[J]. Molecules, 2020, 25(18):4302
    Yan H, Dong J T, Huang X, et al. Protein-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles via diselenide linkages for drug release tracking in real time and tumor chemotherapy[J]. ACS Applied Materials & Interfaces, 2021, 13(24):29070-29082
    Gao J, Yao X L, Chen Y X, et al. Near-infrared light-induced self-powered aptasensing platform for aflatoxin B1 based on upconversion nanoparticles-doped Bi2S3 nanorods[J]. Analytical Chemistry, 2021, 93(2):677-682
    Maysinger D, Gran E R, Bertorelle F, et al. Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes[J]. Theranostics, 2020, 10(4):1633-1648
    Pasquali F, Agrimonti C, Pagano L, et al. Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure[J]. Journal of Hazardous Materials, 2017, 324:744-752
    孙晶, 欧阳少虎, 胡献刚, 等. 3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响[J]. 生态毒理学报, 2020, 15(6):101-114

    Sun J, Ouyang S H, Hu X G, et al. Effects of three carbonaceous nanomaterials on the developmental toxicity, oxidative stress, and metabolic profile in zebrafish[J]. Asian Journal of Ecotoxicology, 2020, 15(6):101-114(in Chinese)

    Li Q, Wang Z, Chen Y R, et al. Elemental bio-imaging of PEGylated NaYF4:Yb/Tm/Gd upconversion nanoparticles in mice by laser ablation inductively coupled plasma mass spectrometry to study toxic side effects on the spleen, liver and kidneys[J]. Metallomics:Integrated Biometal Science, 2017, 9(8):1150-1156
    Guryev E L, Shilyagina N Y, Kostyuk A B, et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2019, 170(1):123-132
    Abualrejal M M A, Eid K, Tian R R, et al. Rational synthesis of three-dimensional core-double shell upconversion nanodendrites with ultrabright luminescence for bioimaging application[J]. Chemical Science, 2019, 10(32):7591-7599
    Shan X R, Chen Q, Yin X Y, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2020, 8(3):426-437
    Chen Y, Fei X X, Ye C Q, et al. Acute hepatotoxicity of multimodal targeted imaging contrast agent NaLuF 4:Gd, Yb, Er-PEG/PEI-FA in mice[J]. The Journal of Toxicological Sciences, 2019, 44(9):621-632
    Tian R R, Zhao S, Liu G F, et al. Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus Agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor[J]. Biomaterials, 2019, 212:64-72
    Seo H J, Nam S H, Im H, et al. Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form[J]. Scientific Reports, 2015, 5:15685
    Feng Y, Chen H D, Ma L N, et al. Surfactant-free aqueous synthesis of novel Ba2GdF7:Yb3+, Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging[J]. ACS Applied Materials & Interfaces, 2017, 9(17):15096-15102
    Li L Y, Hao P L, Wei P, et al. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification[J]. Biomaterials, 2017, 136:43-55
    Yu Z S, Xia Y Z, Xing J, et al. Y1-receptor-ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity[J]. Nanoscale, 2018, 10(36):17038-17052
    Lay A, Sheppard O H, Siefe C, et al. Optically robust and biocompatible mechanosensitive upconverting nanoparticles[J]. ACS Central Science, 2019, 5(7):1211-1222
    Kumar K N, Vijayalakshmi L, Choi J. Investigation of upconversion photoluminescence of Yb3+/Er3+:NaLaMgWO6 noncytotoxic double-perovskite nanophosphors[J]. Inorganic Chemistry, 2019, 58(3):2001-2011
    You Y, Cheng S S, Zhang L, et al. Rational modulation of the luminescence of upconversion nanomaterials with phycocyanin for the sensing and imaging of myeloperoxidase during an inflammatory process[J]. Analytical Chemistry, 2020, 92(7):5091-5099
    邵帅, 丁彬彬, 朱忠丽, 等. 利用主客体化学制备水溶性上转换纳米药物及在肿瘤诊疗中的应用[J]. 分析化学, 2019, 47(6):823-831

    Shao S, Ding B B, Zhu Z L, et al. Preparation of water-soluble up-conversion nano-drug by host-guest chemistry and its application in tumor diagnosis and treatment[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6):823-831(in Chinese)

    Hu Y L, Wu B Y, Jin Q, et al. Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells[J]. Talanta, 2016, 152:504-512
    Chan Y C, Chan M H, Chen C W, et al. Erratum:Near-infrared-activated fluorescence resonance energy transfer-based nanocomposite to sense MMP2-overexpressing oral cancer cells[J]. ACS Omega, 2018, 3(2):2444
    Chen Y H, D'Amario C, Gee A, et al. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4:Yb, Er upconversion nanoparticles[J]. Acta Biomaterialia, 2020, 102:384-393
    Tian J, Zeng X, Xie X J, et al. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(20):6550-6558
    Chen J P, Shi S S, Liu G F, et al. Potential clinical risk of inflammation and toxicity from rare-earth nanoparticles in mice[J]. Chinese Medical Journal, 2018, 131(13):1591-1597
    Xu J T, Lv R C, Du S K, et al. UCNPs@gelatin-ZnPc nanocomposite:Synthesis, imaging and anticancer properties[J]. Journal of Materials Chemistry B, 2016, 4(23):4138-4146
    Rafique R, Baek S H, Park C Y, et al. Morphological evolution of upconversion nanoparticles and their biomedical signal generation[J]. Scientific Reports, 2018, 8(1):17101
    Guller A E, Nadort A, Generalova A N, et al. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications:Better safe than brighter?[J]. ACS Biomaterials Science & Engineering, 2018, 4(9):3143-3153
    Zhang J P, Liu F Y, Li T, et al. Surface charge effect on the cellular interaction and cytotoxicity of NaYF4:Yb3+, Er3+@SiO2 nanoparticles[J]. RSC Advances, 2015, 5(10):7773-7780
    Samhadaneh D M, Mandl G A, Han Z, et al. Evaluation of lanthanide-doped upconverting nanoparticles for in vitro and in vivo applications[J]. ACS Applied Bio Materials, 2020, 3(7):4358-4369
    Vedunova M V, Mishchenko T A, Mitroshina E V, et al. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures[J]. RSC Advances, 2016, 6(40):33656-33665
    Mishchenko T A, Mitroshina E V, Smyshlyaeva A S, et al. Comparative analysis of the effects of upconversion nanoparticles on normal and tumor brain cells[J]. Acta Naturae, 2020, 12(2):86-94
    Liu B, Sun J, Zhu J J, et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy[J]. Advanced Materials, 2020, 32(39):e2004460
    Hernandez-Adame L, Cortez-Espinosa N, Portales-Pérez D P, et al. Toxicity evaluation of high-fluorescent rare-earth metal nanoparticles for bioimaging applications[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105(3):605-615
    Hernández-Adame L, Méndez-Blas A, Ruiz-García J, et al. Synthesis, characterization, and photoluminescence properties of Gd:Tb oxysulfide colloidal particles[J]. Chemical Engineering Journal, 2014, 258:136-145
    Semashko V V, Pudovkin M S, Cefalas A C, et al. Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions[J]. Nanoscale Research Letters, 2018, 13(1):370
    Wang C, He M, Chen B B, et al. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells[J]. Ecotoxicology and Environmental Safety, 2020, 203:110951
  • 加载中
计量
  • 文章访问数:  2340
  • HTML全文浏览数:  2340
  • PDF下载数:  82
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-12

稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展

    通讯作者: 罗利霞, E-mail: luoluo_80@yeah.ne ;  李淑荣, E-mail: 21399333@qq.com ;  孟佩俊, E-mail: mengpeijun79@163.com
    作者简介: 彭微(1997—),女,硕士研究生,研究方向为卫生检验学,E-mail:2848884955@qq.com
  • 1. 内蒙古科技大学包头医学院公共卫生学院, 包头 014040;
  • 2. 内蒙古自治区卫生检测与评价工程技术中心, 包头 014040
基金项目:

国家自然科学基金资助项目(81960601);内蒙古自治区自然科学基金资助项目(2021MS08055)

摘要: 稀土掺杂的上转换纳米材料(rare-earth-elements-doped upconversion nanoparticles,REEs-UCNPs)作为新兴一代的荧光纳米探针,具有独特而优异的反斯托克斯发光特点,与传统荧光材料相比,具有发光强度高、荧光寿命长、激发能量低、组织穿透能力强和生物相容性好等优点。近年来,REEs-UCNPs在生物医学、活体荧光成像、太阳能电池和卫生检测等领域应用日益广泛,其环境和人群暴露日益突出。随着纳米毒理学的深入研究,REEs-UCNPs的生物学毒性效应以及对环境和人类健康的影响逐渐被研究者关注,然而目前有关REEs-UCNPs的生物学毒性的报道较少。本文综述了近年来有关REEs-UCNPs在生物体内的吸收-分布-代谢-排泄、生物毒性、毒作用机制与影响因素等方面的研究进展,以期为REEs-UCNPs的进一步开发、应用和深入研究提供思路和参考依据。

English Abstract

参考文献 (45)

目录

/

返回文章
返回