稀土掺杂的上转换纳米材料的生物毒性与其作用机制研究进展
Research Progress on Biological Toxicity and Its Mechanism of Rare-earth-elements-doped Upconversion Nanoparticles
-
摘要: 稀土掺杂的上转换纳米材料(rare-earth-elements-doped upconversion nanoparticles,REEs-UCNPs)作为新兴一代的荧光纳米探针,具有独特而优异的反斯托克斯发光特点,与传统荧光材料相比,具有发光强度高、荧光寿命长、激发能量低、组织穿透能力强和生物相容性好等优点。近年来,REEs-UCNPs在生物医学、活体荧光成像、太阳能电池和卫生检测等领域应用日益广泛,其环境和人群暴露日益突出。随着纳米毒理学的深入研究,REEs-UCNPs的生物学毒性效应以及对环境和人类健康的影响逐渐被研究者关注,然而目前有关REEs-UCNPs的生物学毒性的报道较少。本文综述了近年来有关REEs-UCNPs在生物体内的吸收-分布-代谢-排泄、生物毒性、毒作用机制与影响因素等方面的研究进展,以期为REEs-UCNPs的进一步开发、应用和深入研究提供思路和参考依据。
-
关键词:
- 稀土掺杂的上转换纳米材料 /
- 生物毒性 /
- 研究进展
Abstract: As a new generation of fluorescent nanoprobes, rare-earth-elements-doped upconversion nanomaterials (REEs-UCNPs) have unique conversion properties of anti-Stokes luminescence, and have remarkable advantages such as high luminous intensity, long fluorescence lifetime, low excitation energy, large penetration depth of excited light in biological tissue and little tissue damage, etc. In recent years, REEs-UCNPs have been widely used in biomedicine, in vivo fluorescence imaging, solar cells, health detection and other fields, and their environmental and human exposure have become increasingly prominent. With the in-depth study of nano toxicology, the biological toxic effects of REEs-UCNPs and their impact on environment and human health have been gradually concerned by researchers. However, there are few reports on the biological toxicity of REEs-UCNPs. In order to provide ideas and reference basis for the further development, application and in-depth research of REEs-UCNPs, this paper reviews the research progress on the biological absorption-distribution-metabolism-excretion, biological toxicity, toxic mechanism and their influencing factors of REEs-UCNPs in recent years. -
Würth C, Fischer S, Grauel B, et al. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles[J]. Journal of the American Chemical Society, 2018, 140(14):4922-4928 Bloembergen N. Solid state infrared quantum counters[J]. Physical Review Letters, 1959, 2(3):84-85 Yao J, Huang C, Liu C H, et al. Upconversion luminescence nanomaterials:A versatile platform for imaging, sensing, and therapy[J]. Talanta, 2020, 208:120157 Wang F, Liu X G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals[J]. Chemical Society Reviews, 2009, 38(4):976-989 Zhu Y M, Xie A G, Li M, et al. Noninvasive photochemical sealing for Achilles tendon rupture by combination of upconversion nanoparticles and photochemical tissue bonding technology[J]. BioMed Research International, 2020, 2020:1753152 Xu F, Sun Y, Gao H P, et al. High-performance perovskite solar cells based on NaCsWO3@NaYF4@NaYF4:Yb, Er upconversion nanoparticles[J]. ACS Applied Materials & Interfaces, 2021, 13(2):2674-2684 Lei Z D, Ling X, Mei Q S, et al. An excitation navigating energy migration of lanthanide ions in upconversion nanoparticles[J]. Advanced Materials, 2020, 32(9):e1906225 Rostami I. Empowering the emission of upconversion nanoparticles for precise subcellular imaging[J]. Nanomaterials, 2021, 11(6):1541 Guryev E L, Smyshlyaeva A S, Shilyagina N Y, et al. UCNP-based photoluminescent nanomedicines for targeted imaging and theranostics of cancer[J]. Molecules, 2020, 25(18):4302 Yan H, Dong J T, Huang X, et al. Protein-gated upconversion nanoparticle-embedded mesoporous silica nanovehicles via diselenide linkages for drug release tracking in real time and tumor chemotherapy[J]. ACS Applied Materials & Interfaces, 2021, 13(24):29070-29082 Gao J, Yao X L, Chen Y X, et al. Near-infrared light-induced self-powered aptasensing platform for aflatoxin B1 based on upconversion nanoparticles-doped Bi2S3 nanorods[J]. Analytical Chemistry, 2021, 93(2):677-682 Maysinger D, Gran E R, Bertorelle F, et al. Gold nanoclusters elicit homeostatic perturbations in glioblastoma cells and adaptive changes of lysosomes[J]. Theranostics, 2020, 10(4):1633-1648 Pasquali F, Agrimonti C, Pagano L, et al. Nucleo-mitochondrial interaction of yeast in response to cadmium sulfide quantum dot exposure[J]. Journal of Hazardous Materials, 2017, 324:744-752 孙晶, 欧阳少虎, 胡献刚, 等. 3种碳纳米材料对斑马鱼生长发育、氧化应激及代谢的影响[J]. 生态毒理学报, 2020, 15(6):101-114 Sun J, Ouyang S H, Hu X G, et al. Effects of three carbonaceous nanomaterials on the developmental toxicity, oxidative stress, and metabolic profile in zebrafish[J]. Asian Journal of Ecotoxicology, 2020, 15(6):101-114(in Chinese)
Li Q, Wang Z, Chen Y R, et al. Elemental bio-imaging of PEGylated NaYF4:Yb/Tm/Gd upconversion nanoparticles in mice by laser ablation inductively coupled plasma mass spectrometry to study toxic side effects on the spleen, liver and kidneys[J]. Metallomics:Integrated Biometal Science, 2017, 9(8):1150-1156 Guryev E L, Shilyagina N Y, Kostyuk A B, et al. Preclinical study of biofunctional polymer-coated upconversion nanoparticles[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2019, 170(1):123-132 Abualrejal M M A, Eid K, Tian R R, et al. Rational synthesis of three-dimensional core-double shell upconversion nanodendrites with ultrabright luminescence for bioimaging application[J]. Chemical Science, 2019, 10(32):7591-7599 Shan X R, Chen Q, Yin X Y, et al. Polypyrrole-based double rare earth hybrid nanoparticles for multimodal imaging and photothermal therapy[J]. Journal of Materials Chemistry B, 2020, 8(3):426-437 Chen Y, Fei X X, Ye C Q, et al. Acute hepatotoxicity of multimodal targeted imaging contrast agent NaLuF 4:Gd, Yb, Er-PEG/PEI-FA in mice[J]. The Journal of Toxicological Sciences, 2019, 44(9):621-632 Tian R R, Zhao S, Liu G F, et al. Construction of lanthanide-doped upconversion nanoparticle-Uelx Europaeus Agglutinin-I bioconjugates with brightness red emission for ultrasensitive in vivo imaging of colorectal tumor[J]. Biomaterials, 2019, 212:64-72 Seo H J, Nam S H, Im H, et al. Rapid hepatobiliary excretion of micelle-encapsulated/radiolabeled upconverting nanoparticles as an integrated form[J]. Scientific Reports, 2015, 5:15685 Feng Y, Chen H D, Ma L N, et al. Surfactant-free aqueous synthesis of novel Ba2GdF7:Yb3+, Er3+@PEG upconversion nanoparticles for in vivo trimodality imaging[J]. ACS Applied Materials & Interfaces, 2017, 9(17):15096-15102 Li L Y, Hao P L, Wei P, et al. DNA-assisted upconversion nanoplatform for imaging-guided synergistic therapy and laser-switchable drug detoxification[J]. Biomaterials, 2017, 136:43-55 Yu Z S, Xia Y Z, Xing J, et al. Y1-receptor-ligand-functionalized ultrasmall upconversion nanoparticles for tumor-targeted trimodality imaging and photodynamic therapy with low toxicity[J]. Nanoscale, 2018, 10(36):17038-17052 Lay A, Sheppard O H, Siefe C, et al. Optically robust and biocompatible mechanosensitive upconverting nanoparticles[J]. ACS Central Science, 2019, 5(7):1211-1222 Kumar K N, Vijayalakshmi L, Choi J. Investigation of upconversion photoluminescence of Yb3+/Er3+:NaLaMgWO6 noncytotoxic double-perovskite nanophosphors[J]. Inorganic Chemistry, 2019, 58(3):2001-2011 You Y, Cheng S S, Zhang L, et al. Rational modulation of the luminescence of upconversion nanomaterials with phycocyanin for the sensing and imaging of myeloperoxidase during an inflammatory process[J]. Analytical Chemistry, 2020, 92(7):5091-5099 邵帅, 丁彬彬, 朱忠丽, 等. 利用主客体化学制备水溶性上转换纳米药物及在肿瘤诊疗中的应用[J]. 分析化学, 2019, 47(6):823-831 Shao S, Ding B B, Zhu Z L, et al. Preparation of water-soluble up-conversion nano-drug by host-guest chemistry and its application in tumor diagnosis and treatment[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6):823-831(in Chinese)
Hu Y L, Wu B Y, Jin Q, et al. Facile synthesis of 5 nm NaYF4:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells[J]. Talanta, 2016, 152:504-512 Chan Y C, Chan M H, Chen C W, et al. Erratum:Near-infrared-activated fluorescence resonance energy transfer-based nanocomposite to sense MMP2-overexpressing oral cancer cells[J]. ACS Omega, 2018, 3(2):2444 Chen Y H, D'Amario C, Gee A, et al. Dispersion stability and biocompatibility of four ligand-exchanged NaYF4:Yb, Er upconversion nanoparticles[J]. Acta Biomaterialia, 2020, 102:384-393 Tian J, Zeng X, Xie X J, et al. Intracellular adenosine triphosphate deprivation through lanthanide-doped nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(20):6550-6558 Chen J P, Shi S S, Liu G F, et al. Potential clinical risk of inflammation and toxicity from rare-earth nanoparticles in mice[J]. Chinese Medical Journal, 2018, 131(13):1591-1597 Xu J T, Lv R C, Du S K, et al. UCNPs@gelatin-ZnPc nanocomposite:Synthesis, imaging and anticancer properties[J]. Journal of Materials Chemistry B, 2016, 4(23):4138-4146 Rafique R, Baek S H, Park C Y, et al. Morphological evolution of upconversion nanoparticles and their biomedical signal generation[J]. Scientific Reports, 2018, 8(1):17101 Guller A E, Nadort A, Generalova A N, et al. Rational surface design of upconversion nanoparticles with polyethylenimine coating for biomedical applications:Better safe than brighter?[J]. ACS Biomaterials Science & Engineering, 2018, 4(9):3143-3153 Zhang J P, Liu F Y, Li T, et al. Surface charge effect on the cellular interaction and cytotoxicity of NaYF4:Yb3+, Er3+@SiO2 nanoparticles[J]. RSC Advances, 2015, 5(10):7773-7780 Samhadaneh D M, Mandl G A, Han Z, et al. Evaluation of lanthanide-doped upconverting nanoparticles for in vitro and in vivo applications[J]. ACS Applied Bio Materials, 2020, 3(7):4358-4369 Vedunova M V, Mishchenko T A, Mitroshina E V, et al. Cytotoxic effects of upconversion nanoparticles in primary hippocampal cultures[J]. RSC Advances, 2016, 6(40):33656-33665 Mishchenko T A, Mitroshina E V, Smyshlyaeva A S, et al. Comparative analysis of the effects of upconversion nanoparticles on normal and tumor brain cells[J]. Acta Naturae, 2020, 12(2):86-94 Liu B, Sun J, Zhu J J, et al. Injectable and NIR-responsive DNA-inorganic hybrid hydrogels with outstanding photothermal therapy[J]. Advanced Materials, 2020, 32(39):e2004460 Hernandez-Adame L, Cortez-Espinosa N, Portales-Pérez D P, et al. Toxicity evaluation of high-fluorescent rare-earth metal nanoparticles for bioimaging applications[J]. Journal of Biomedical Materials Research Part B, Applied Biomaterials, 2017, 105(3):605-615 Hernández-Adame L, Méndez-Blas A, Ruiz-García J, et al. Synthesis, characterization, and photoluminescence properties of Gd:Tb oxysulfide colloidal particles[J]. Chemical Engineering Journal, 2014, 258:136-145 Semashko V V, Pudovkin M S, Cefalas A C, et al. Tiny rare-earth fluoride nanoparticles activate tumour cell growth via electrical polar interactions[J]. Nanoscale Research Letters, 2018, 13(1):370 Wang C, He M, Chen B B, et al. Study on cytotoxicity, cellular uptake and elimination of rare-earth-doped upconversion nanoparticles in human hepatocellular carcinoma cells[J]. Ecotoxicology and Environmental Safety, 2020, 203:110951
计量
- 文章访问数: 2340
- HTML全文浏览数: 2340
- PDF下载数: 82
- 施引文献: 0