双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移

杨雨桐, 周宏瑞, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001
引用本文: 杨雨桐, 周宏瑞, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001
Yang Yutong, Zhou Hongrui, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Bisphenol A Promotes Conjugative Transfer of Antibiotic Resistance Genes Mediated by Pheromone-responsive Plasmid in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001
Citation: Yang Yutong, Zhou Hongrui, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Bisphenol A Promotes Conjugative Transfer of Antibiotic Resistance Genes Mediated by Pheromone-responsive Plasmid in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001

双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移

    作者简介: 杨雨桐(1995-),女,硕士研究生,研究方向为耐药基因转移,E-mail:yangyutong0223@163.com
    通讯作者: 邱志刚, E-mail: zhigangqiu99@gmail.com
  • 基金项目:

    国家自然科学基金面上项目(42177414)

    天津市自然科学基金重点项目(17JCZDJC39100)

  • 中图分类号: X171.5

Bisphenol A Promotes Conjugative Transfer of Antibiotic Resistance Genes Mediated by Pheromone-responsive Plasmid in Enterococcus faecalis

    Corresponding author: Qiu Zhigang, zhigangqiu99@gmail.com
  • Fund Project:
  • 摘要: 粪肠球菌是一种在自然水体中广泛存在的革兰氏阳性细菌。信息素调控质粒介导的接合转移是造成粪肠球菌耐药基因快速扩散的重要方式。双酚A是一种内分泌干扰物,因其在工业中大量应用造成其在水环境中的广泛分布。本文以信息素调控质粒中比较有代表性的pCF10质粒作为研究对象,研究了双酚A对粪肠球菌中耐药基因接合转移的影响,证实了双酚A可以促进pCF10质粒介导的耐药基因接合转移,且这一结果同双酚A作用浓度和作用时间相关。双酚A影响耐药基因的扩散,是通过促进编码正调控信息素的ccfA基因表达实现的。本文旨在深入理解双酚A影响抗生素抗性基因扩散的环境行为,为耐药基因控制及双酚A环境效应的评估提供理论支持。
  • 加载中
  • World Health Organization (WHO). Antimicrobial resistance:Global report on surveillance[R]. Geneva:WHO, 2014
    Wallace M J, Fishbein S R S, Dantas G. Antimicrobial resistance in enteric bacteria:Current state and next-generation solutions[J]. Gut Microbes, 2020, 12(1):1799654
    Smillie C, Garcillán-Barcia M P, Francia M V, et al. Mobility of plasmids[J]. Microbiology and Molecular Biology Reviews, 2010, 74(3):434-452
    Hirt H, Schlievert P M, Dunny G M. In vivo induction of virulence and antibiotic resistance transfer in Enterococcus faecalis mediated by the sex pheromone-sensing system of pCF10[J]. Infection and Immunity, 2002, 70(2):716-723
    Sterling A J, Snelling W J, Naughton P J, et al. Competent but complex communication:The phenomena of pheromone-responsive plasmids[J]. PLoS Pathogens, 2020, 16(4):e1008310
    Waters C M, Bassler B L. Quorum sensing:Cell-to-cell communication in bacteria[J]. Annual Review of Cell and Developmental Biology, 2005, 21:319-346
    Wardal E, Sadowy E, Hryniewicz W. Complex nature of enterococcal pheromone-responsive plasmids[J]. Polish Journal of Microbiology, 2010, 59(2):79-87
    Antiporta M H, Dunny G M. ccfA, the genetic determinant for the cCF10 peptide pheromone in Enterococcus faecalis OG1RF[J]. Journal of Bacteriology, 2002, 184(4):1155-1162
    Varahan S, Harms N, Gilmore M S, et al. An ABC transporter is required for secretion of peptide sex pheromones in Enterococcus faecalis [J]. mBio, 2014, 5(5):e01726-e01714
    Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics[J]. Infection Ecology&Epidemiology, 2015, 5(1):28564
    Berendonk T U, Manaia C M, Merlin C, et al. Tackling antibiotic resistance:The environmental framework[J]. Nature Reviews Microbiology, 2015, 13(5):310-317
    Qiu Z G, Yu Y M, Chen Z L, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(13):4944-4949
    Zhang Y, Gu A Z, He M, et al. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera[J]. Environmental Science&Technology, 2017, 51(1):570-580
    Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community[J]. Environmental Pollution, 2021, 268(Pt B):115903
    Kundakovic M, Champagne F A. Epigenetic perspective on the developmental effects of bisphenol A[J]. Brain, Behavior, and Immunity, 2011, 25(6):1084-1093
    Geens T, Goeyens L, Covaci A. Are potential sources for human exposure to bisphenol-A overlooked?[J]. International Journal of Hygiene and Environmental Health, 2011, 214(5):339-347
    Chapin R E, Adams J, Boekelheide K, et al. NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A[J]. Birth Defects Research Part B:Developmental and Reproductive Toxicology, 2008, 83(3):157-395
    Clayton E M, Todd M, Dowd J B, et al. The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003-2006[J]. Environmental Health Perspectives, 2011, 119(3):390-396
    Richter C A, Birnbaum L S, Farabollini F, et al. In vivo effects of bisphenol A in laboratory rodent studies[J]. Reproductive Toxicology, 2007, 24(2):199-224
    Sheng Z G, Zhu B Z. Low concentrations of bisphenol A induce mouse spermatogonial cell proliferation by G protein-coupled receptor 30 and estrogen receptor-Α[J]. Environmental Health Perspectives, 2011, 119(12):1775-1780
    Huang Y Q, Wong C K, Zheng J S, et al. Bisphenol A (BPA) in China:A review of sources, environmental levels, and potential human health impacts[J]. Environment International, 2012, 42:91-99
    Catenza C J, Farooq A, Shubear N S, et al. A targeted review on fate, occurrence, risk and health implications of bisphenol analogues[J]. Chemosphere, 2021, 268:129273
    Yamazaki E, Yamashita N, Taniyasu S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122:565-572
    Prossnitz E R, Barton M. Estrogen biology:New insights into GPER function and clinical opportunities[J]. Molecular and Cellular Endocrinology, 2014, 389(1-2):71-83
    Christie P J, Dunny G M. Identification of regions of the Streptococcus faecalis plasmid pCF-10 that encode antibiotic resistance and pheromone response functions[J]. Plasmid, 1986, 15(3):230-241
    Nakayama J, Ruhfel R E, Dunny G M, et al. The prgQ gene of the Enterococcus faecalis tetracycline resistance plasmid pCF10 encodes a peptide inhibitor, iCF10[J]. Journal of Bacteriology, 1994, 176(23):7405-7408
    Flannagan S E, Zitzow L A, Su Y A, et al. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis [J]. Plasmid, 1994, 32(3):350-354
    Suzuki M T, Taylor L T, DeLong E F. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5'-nuclease assays[J]. Applied and Environmental Microbiology, 2000, 66(11):4605-4614
    Jiang Q, Feng M B, Ye C S, et al. Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments:A review[J]. The Science of the Total Environment, 2022, 806(Pt 3):150568
    Dunny G M, Craig R A, Carron R L, et al. Plasmid transfer in Streptococcus faecalis :Production of multiple sex pheromones by recipients[J]. Plasmid, 1979, 2(3):454-465
    Zhang H F, Zhang Y P, Li J B, et al. Occurrence and exposure assessment of bisphenol analogues in source water and drinking water in China[J]. The Science of the Total Environment, 2019, 655:607-613
    Yan Z Y, Liu Y H, Yan K, et al. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes:Occurrence, distribution, source apportionment, and ecological and human health risk[J]. Chemosphere, 2017, 184:318-328
    Moreman J, Lee O, Trznadel M, et al. Acute toxicity, teratogenic, and estrogenic effects of bisphenol A and its alternative replacements bisphenol S, bisphenol F, and bisphenol AF in zebrafish embryo-larvae[J]. Environmental Science&Technology, 2017, 51(21):12796-12805
    任文娟,汪贞,王蕾,等.双酚A及其类似物对斑马鱼胚胎及幼鱼的毒性效应[J].生态毒理学报, 2017, 12(1):184-192

    Ren W J, Wang Z, Wang L, et al. Effects of bisphenol A and its analogues on zebrafish embryos and larvae[J]. Asian Journal of Ecotoxicology, 2017, 12(1):184-192(in Chinese)

    Fan H J, Fernando S R, Jiang L H, et al. Bisphenol A analogues suppress spheroid attachment on human endometrial epithelial cells through modulation of steroid hormone receptors signaling pathway[J]. Cells, 2021, 10(11):2882
    Desdoits-Lethimonier C, Lesné L, Gaudriault P, et al. Parallel assessment of the effects of bisphenol A and several of its analogs on the adult human testis[J]. Human Reproduction, 2017, 32(7):1465-1473
    Alipour M, Hajiesmaili R, Talebjannat M, et al. Identification and antimicrobial resistance of Enterococcus spp. isolated from the river and coastal waters in northern Iran[J]. The Scientific World Journal, 2014, 2014:287458
    Hirt H, Greenwood-Quaintance K E, Karau M J, et al. Enterococcus faecalis sex pheromone cCF10 enhances conjugative plasmid transfer in vivo [J]. mBio, 2018, 9(1):e00037-e00018
    Bouskine A, Nebout M, Brücker-Davis F, et al. Low doses of bisphenol A promote human seminoma cell proliferation by activating PKA and PKG via a membrane G-protein-coupled estrogen receptor[J]. Environmental Health Perspectives, 2009, 117(7):1053-1058
    Catron T R, Keely S P, Brinkman N E, et al. Host developmental toxicity of BPA and BPA alternatives is inversely related to microbiota disruption in zebrafish[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2019, 167(2):468-483
    Jasni A S, Mullany P, Hussain H, et al. Demonstration of conjugative transposon (Tn5397)-mediated horizontal gene transfer between Clostridium difficile and Enterococcus faecalis [J]. Antimicrobial Agents and Chemotherapy, 2010, 54(11):4924-4926
    Weigel L M, Clewell D B, Gill S R, et al. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus [J]. Science, 2003, 302(5650):1569-1571
    Christie P J, Korman R Z, Zahler S A, et al. Two conjugation systems associated with Streptococcus faecalis plasmid pCF10:Identification of a conjugative transposon that transfers between S. faecalis and Bacillus subtilis [J]. Journal of Bacteriology, 1987, 169(6):2529-2536
    Prüss A. Review of epidemiological studies on health effects from exposure to recreational water[J]. International Journal of Epidemiology, 1998, 27(1):1-9
    Kang J H, Asai D, Katayama Y. Bisphenol A in the aquatic environment and its endocrine-disruptive effects on aquatic organisms[J]. Critical Reviews in Toxicology, 2007, 37(7):607-625
    Kleerebezem M, Quadri L E N, Kuipers O P, et al. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria[J]. Molecular Microbiology, 1997, 24(5):895-904
    Nasser W, Reverchon S. New insights into the regulatory mechanisms of the LuxR family of quorum sensing regulators[J]. Analytical and Bioanalytical Chemistry, 2007, 387(2):381-390
    马丽娜,米宏霏,薛云新,等. ROS在细菌耐药及抗生素杀菌中的作用机制[J].遗传, 2016, 38(10):902-909

    Ma L N, Mi H F, Xue Y X, et al. The mechanism of ROS regulation of antibiotic resistance and antimicrobial lethality[J]. Hereditas, 2016, 38(10):902-909(in Chinese)

    刘武康,吴淑燕,陈国薇,等.细菌产生的活性氧及其功能[J].微生物学杂志, 2016, 36(1):89-95

    Liu W K, Wu S Y, Chen G W, et al. The reactive oxygen species generated by bacteria and its functions[J]. Journal of Microbiology, 2016, 36(1):89-95(in Chinese)

    Boles B R, Singh P K. Endogenous oxidative stress produces diversity and adaptability in biofilm communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(34):12503-12508
    Aiassa V, Barnes A I, Albesa I. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis [J]. Biochemical and Biophysical Research Communications, 2010, 393(1):84-88
    van Acker H, Coenye T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria[J]. Trends in Microbiology, 2017, 25(6):456-466
    Cabiscol E, Tamarit J, Ros J. Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology, 2000, 3(1):3-8
    Yu Z G, Wang Y, Lu J, et al. Nonnutritive sweeteners can promote the dissemination of antibiotic resistance through conjugative gene transfer[J]. The ISME Journal, 2021, 15(7):2117-2130
    Jia Y Q, Wang Z Q, Fang D, et al. Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes[J]. Science of the Total Environment, 2021, 782:146916
    Huang M Q, Liu S, Fu L, et al. Bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells[J]. Chemosphere, 2020, 253:126707
  • 加载中
计量
  • 文章访问数:  2514
  • HTML全文浏览数:  2514
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-19
杨雨桐, 周宏瑞, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001
引用本文: 杨雨桐, 周宏瑞, 杨晓波, 王尚, 薛斌, 李辰宇, 赵辰, 张曦, 谌志强, 王景峰, 邱志刚. 双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移[J]. 生态毒理学报, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001
Yang Yutong, Zhou Hongrui, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Bisphenol A Promotes Conjugative Transfer of Antibiotic Resistance Genes Mediated by Pheromone-responsive Plasmid in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001
Citation: Yang Yutong, Zhou Hongrui, Yang Xiaobo, Wang Shang, Xue Bin, Li Chenyu, Zhao Chen, Zhang Xi, Shen Zhiqiang, Wang Jingfeng, Qiu Zhigang. Bisphenol A Promotes Conjugative Transfer of Antibiotic Resistance Genes Mediated by Pheromone-responsive Plasmid in Enterococcus faecalis[J]. Asian journal of ecotoxicology, 2022, 17(1): 191-202. doi: 10.7524/AJE.1673-5897.20211019001

双酚A促进粪肠球菌中信息素调控质粒pCF10介导的耐药基因接合转移

    通讯作者: 邱志刚, E-mail: zhigangqiu99@gmail.com
    作者简介: 杨雨桐(1995-),女,硕士研究生,研究方向为耐药基因转移,E-mail:yangyutong0223@163.com
  • 军事科学院军事医学研究院环境医学与作业医学研究所, 天津 300050
基金项目:

国家自然科学基金面上项目(42177414)

天津市自然科学基金重点项目(17JCZDJC39100)

摘要: 粪肠球菌是一种在自然水体中广泛存在的革兰氏阳性细菌。信息素调控质粒介导的接合转移是造成粪肠球菌耐药基因快速扩散的重要方式。双酚A是一种内分泌干扰物,因其在工业中大量应用造成其在水环境中的广泛分布。本文以信息素调控质粒中比较有代表性的pCF10质粒作为研究对象,研究了双酚A对粪肠球菌中耐药基因接合转移的影响,证实了双酚A可以促进pCF10质粒介导的耐药基因接合转移,且这一结果同双酚A作用浓度和作用时间相关。双酚A影响耐药基因的扩散,是通过促进编码正调控信息素的ccfA基因表达实现的。本文旨在深入理解双酚A影响抗生素抗性基因扩散的环境行为,为耐药基因控制及双酚A环境效应的评估提供理论支持。

English Abstract

参考文献 (56)

返回顶部

目录

/

返回文章
返回