杀菌剂对蜜蜂生理和行为的毒性效应研究

熊曼琼, 覃淦, 王梨竹, 黄少康, 李江红, 段辛乐. 杀菌剂对蜜蜂生理和行为的毒性效应研究[J]. 生态毒理学报, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002
引用本文: 熊曼琼, 覃淦, 王梨竹, 黄少康, 李江红, 段辛乐. 杀菌剂对蜜蜂生理和行为的毒性效应研究[J]. 生态毒理学报, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002
Xiong Manqiong, Qin Gan, Wang Lizhu, Huang Shaokang, Li Jianghong, Duan Xinle. Toxic Effects of Fungicides on Physiology and Behavior of Honeybee[J]. Asian journal of ecotoxicology, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002
Citation: Xiong Manqiong, Qin Gan, Wang Lizhu, Huang Shaokang, Li Jianghong, Duan Xinle. Toxic Effects of Fungicides on Physiology and Behavior of Honeybee[J]. Asian journal of ecotoxicology, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002

杀菌剂对蜜蜂生理和行为的毒性效应研究

    作者简介: 熊曼琼(1996-),女,硕士研究生,研究方向为蜜蜂毒理学,E-mail:2630214154@qq.com
    通讯作者: 段辛乐, E-mail: xinleduan@fafu.edu.cn
  • 基金项目:

    福建省自然科学基金资助项目(2022J01585);科技基础资源调查专项—传粉昆虫资源调查监测网建设(2018FY100402);福建省大学生创新创业训练计划立项项目(202110389159,201910389205,201810389089);福州市科技项目(KLi19001A/2019-N-3,KH190025A,KH190316A);福建农林大学科技创新专项基金项目(KFA17244A)

  • 中图分类号: X171.5

Toxic Effects of Fungicides on Physiology and Behavior of Honeybee

    Corresponding author: Duan Xinle, xinleduan@fafu.edu.cn
  • Fund Project:
  • 摘要: 杀菌剂在植物病害防治过程中被广泛应用,其在确保粮食安全中具有重要作用。作为重要的经济和授粉昆虫,蜜蜂在传粉过程中不可避免地接触到杀菌剂。含有杀菌剂残留的花蜜和花粉也会被蜜蜂采集进蜂巢,进而影响蜂群的健康和授粉效能。本文从杀菌剂自身及与其他农药的协同作用对蜜蜂毒性、生长发育、生理和行为的影响等方面进行综述,阐述杀菌剂对蜜蜂个体和群体的负面影响,以期为有害生物防治策略制定过程中考虑蜜蜂等授粉昆虫安全,建立并推广蜜蜂授粉与绿色防控增产技术集成应用,并促进我国养蜂业和授粉业的健康可持续发展提供理论依据。
  • 加载中
  • 匡邦郁, 匡海鸥. 蜜蜂生物学[M]. 昆明:云南科技出版社, 2003:220-222
    安建东, 陈文锋. 全球农作物蜜蜂授粉概况[J]. 中国农学通报, 2011, 27(1):374-382

    An J D, Chen W F. Review of crop pollination by honey bees world-wide[J]. Chinese Agricultural Science Bulletin, 2011, 27(1):374-382(in Chinese)

    刘朋飞, 吴杰, 李海燕, 等. 中国农业蜜蜂授粉的经济价值评估[J]. 中国农业科学, 2011, 44(24):5117-5123

    Liu P F, Wu J, Li H Y, et al. Economic values of bee pollination to China's agriculture[J]. Scientia Agricultura Sinica, 2011, 44(24):5117-5123(in Chinese)

    Klein A M, Vaissière B E, Cane J H, et al. Importance of pollinators in changing landscapes for world crops[J]. Proceedings Biological Sciences, 2007, 274(1608):303-313
    Siviter H, Bailes E J, Martin C D, et al. Agrochemicals interact synergistically to increase bee mortality[J]. Nature, 2021, 596(7872):389-392
    Stokstad E. Pesticides under fire for risks to pollinators[J]. Science, 2013, 340(6133):674-676
    Fairbrother A, Purdy J, Anderson T, et al. Risks of neonicotinoid insecticides to honeybees[J]. Environmental Toxicology and Chemistry, 2014, 33(4):719-731
    卜元卿, 单正军, 周军英, 等. 农药对蜜蜂生物毒性及安全性评价研究回顾[J]. 农药, 2009, 48(6):399-401

    , 426 Bu Y Q, Shan Z J, Zhou J Y, et al. Research review on biological toxicity and safety assessment of pesticides to honeybee[J]. Agrochemicals, 2009, 48(6):399-401, 426(in Chinese)

    Goulson D, Nicholls E, Botías C, et al. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers[J]. Science, 2015, 347(6229):1255957
    廖建华, 程燕, 卜元卿, 等. 中国主要蜜源作物上登记的农药品种及其中杀虫剂对蜜蜂的初级风险评估[J]. 农药学学报, 2018, 20(1):100-109

    Liao J H, Cheng Y, Bu Y Q, et al. Review of the pesticides registered on major nectar crops in China and the primary risk assessment of the insecticides to honey bees[J]. Chinese Journal of Pesticide Science, 2018, 20(1):100-109(in Chinese)

    Legard D E, Xiao C L, Mertely J C, et al. Management of Botrytis fruit rot in annual winter strawberry using captan, thiram, and iprodione[J]. Plant Disease, 2001, 85(1):31-39
    Mullin C A, Frazier M, Frazier J L, et al. High levels of miticides and agrochemicals in North American apiaries:Implications for honey bee health[J]. PLoS One, 2010, 5(3):e9754
    Fungicide Resistance Action Committee. Fungal control agents sorted by cross resistance pattern and mode of action[EB/OL].[2021-10-19]. https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2021-final.pdf
    Fairbrother A, Purdy J, Anderson T, et al. Risks of neonicotinoid insecticides to honeybees[J]. Environmental Toxicology and Chemistry, 2014, 33(4):719-731
    王康, 庞倩, 张文文, 等. 多菌灵亚致死剂量对意大利蜜蜂幼虫生长发育和解毒酶系活性的影响[J]. 昆虫学报, 2017, 60(6):642-649

    Wang K, Pang Q, Zhang W W, et al. Effects of sublethal doses of carbendazim on the growth and detoxifying enzyme activities of honeybee(Apis mellifera ligustica) larvae[J]. Acta Entomologica Sinica, 2017, 60(6):642-649(in Chinese)

    段辛乐, 熊曼琼, 刘文斌, 等. 苜蓿花期三种杀菌剂对意大利蜜蜂保护酶和解毒酶的影响[J]. 草业学报, 2020, 29(11):74-82

    Duan X L, Xiong M Q, Liu W B, et al. Effects of three fungicides on the activities of protective enzymes and detoxifying enzymes in Apis mellifera[J]. Acta Prataculturae Sinica, 2020, 29(11):74-82(in Chinese)

    代君君, 舒蕊, 刘健, 等. 苯菌灵胁迫对蜜蜂肠道微生物菌群结构的影响[J]. 中国农学通报, 2020, 36(26):136-140

    Dai J J, Shu R, Liu J, et al. Benomyl stress:Effects on the microbial community structure in the intestine of honey bees[J]. Chinese Agricultural Science Bulletin, 2020, 36(26):136-140(in Chinese)

    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 化学农药环境安全评价试验准则第10部分:蜜蜂急性毒性试验:GB/T 31270.10-2014[S]. 北京:中国标准出版社, 2015
    赵帅, 袁善奎, 才冰, 等. 300个农药制剂对蜜蜂的急性经口毒性[J]. 农药, 2011, 50(4):278-280

    Zhao S, Yuan S K, Cai B, et al. The acute oral toxicity of 300 formulated pesticides to Apis mellifera[J]. Agrochemicals, 2011, 50(4):278-280(in Chinese)

    苍涛, 王彦华, 俞瑞鲜, 等. 蜜源植物常用农药对蜜蜂急性毒性及风险评价[J]. 浙江农业学报, 2012, 24(5):853-859

    Cang T, Wang Y H, Yu R X, et al. The acute toxicity and risk assessment of 25 pesticides used in nectar plant to Apis mellifera L.[J]. Acta Agriculturae Zhejiangensis, 2012, 24(5):853-859(in Chinese)

    贾变桃, 邹亚飞, 董丰收, 等. 几种杀菌剂对意大利蜜蜂的安全性评价[J]. 中国蜂业, 2015, 66(4):13-16

    Jia B T, Zou Y F, Dong F S, et al. Acute toxicity and safety evaluation of several fungicides to Apis mellifera L.[J]. Apiculture of China, 2015, 66(4):13-16(in Chinese)

    王雅珺, 高景林, 韩文素, 等. 10种杀菌剂对中华蜜蜂的急性毒性测定及风险评估[J]. 环境昆虫学报, 2017, 39(1):126-133

    Wang Y J, Gao J L, Han W S, et al. Acute toxicity and hazard assessment of 10 fungicides on Apis cerana cerana[J]. Journal of Environmental Entomology, 2017, 39(1):126-133(in Chinese)

    Simon-Delso N, San Martin G, Bruneau E, et al. Time-to-death approach to reveal chronic and cumulative toxicity of a fungicide for honeybees not revealed with the standard ten-day test[J]. Scientific Reports, 2018, 8:7241
    谭丽超, 葛峰, 程燕, 等. 4种常用甲氧基丙烯酸酯类杀菌剂的急性毒性评价[J]. 农药科学与管理, 2021, 42(1):33-38

    Tan L C, Ge F, Cheng Y, et al. Acute toxicity of four commonly used strobilurin fungicides[J]. Pesticide Science and Administration, 2021, 42(1):33-38(in Chinese)

    叶萱. 制剂对蜜蜂的毒性[J]. 世界农药, 2015, 37(6):31-36

    , 45 Ye X. Toxicity of preparation to bees[J]. World Pesticides, 2015, 37(6):31-36, 45(in Chinese)

    黄少康. 蜜蜂生理学[M]. 北京:中国农业出版社, 2011:140-144
    范荣莉. 多菌灵胁迫对意大利蜜蜂(Apis mellifera ligustica)健康的影响[D]. 扬州:扬州大学, 2020:2-4 Fan R L. Effects of carbendazim stress on the health of honeybee(Apis mellifera ligustica)[D]. Yangzhou:Yangzhou University, 2020:2

    -4(in Chinese)

    Metz B N, Wu-Smart J, Simone-Finstrom M. Proceedings of the 2020 American bee research conference[J]. Insects, 2020, 11(6):362
    Fisher A 2nd, Degrandi-Hoffman G, Smith B H, et al. Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera)[J]. Environmental Pollution, 2021, 269:115964
    Eduardo da Costa Domingues C, Bello Inoue L V, Mathias da Silva-Zacarin E C, et al. Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees[J]. Environmental Pollution, 2020, 266(Pt 2):115267
    Tadei R, Domingues C E C, Malaquias J B, et al. Late effect of larval co-exposure to the insecticide clothianidin and fungicide pyraclostrobin in Africanized Apis mellifera[J]. Scientific Reports, 2019, 9(1):3277
    Liao L H, Wu W Y, Dad A, et al. Fungicide suppression of flight performance in the honeybee (Apis mellifera) and its amelioration by quercetin[J]. Proceedings Biological Sciences, 2019, 286(1917):20192041
    Traynor K S, VanEngelsdorp D, Lamas Z S. Social disruption:Sublethal pesticides in pollen lead to Apis mellifera queen events and brood loss[J]. Ecotoxicology and Environmental Safety, 2021, 214:112105
    Dai P L, Jack C J, Mortensen A N, et al. The impacts of chlorothalonil and diflubenzuron on Apis mellifera L. larvae reared in vitro[J]. Ecotoxicology and Environmental Safety, 2018, 164:283-288
    Zhu W Y, Schmehl D R, Mullin C A, et al. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae[J]. PLoS One, 2014, 9(1):e77547
    O'Neal S T, Reeves A M, Fell R D, et al. Chlorothalonil exposure alters virus susceptibility and markers of immunity, nutrition, and development in honey bees[J]. Journal of Insect Science (Online), 2019, 19(3):14
    Tomé H V V, Schmehl D R, Wedde A E, et al. Frequently encountered pesticides can cause multiple disorders in developing worker honey bees[J]. Environmental Pollution, 2020, 256:113420
    Walsh E M, Sweet S, Knap A, et al. Queen honey bee (Apis mellifera) pheromone and reproductive behavior are affected by pesticide exposure during development[J].Behavioral Ecology and Sociobiology, 2020, 74(3):1-14
    陈恒. 多菌灵和东方蜜蜂微孢子虫共同胁迫对工蜂发育的影响[D]. 扬州:扬州大学, 2021:35-42 Chen H. Effect of interactions between carbendazim and Nosema ceranae on the development of worker bees[D]. Yangzhou:Yangzhou University, 2021:35

    -42(in Chinese)

    Degrandi-Hoffman G, Corby-Harris V, DeJong E W, et al. Honey bee gut microbial communities are robust to the fungicide Pristine® consumed in pollen[J]. Apidologie, 2017, 48(3):340-352
    Johnson R M, Percel E G. Effect of a fungicide and spray adjuvant on queen-rearing success in honey bees (Hymenoptera:Apidae)[J]. Journal of Economic Entomology, 2013, 106(5):1952-1957
    Degrandi-Hoffman G, Chen Y P, Simonds R. The effects of pesticides on queen rearing and virus titers in honey bees (Apis mellifera L.)[J]. Insects, 2013, 4(1):71-89
    Milone J P, Chakrabarti P, Sagili R R, et al. Colony-level pesticide exposure affects honey bee (Apis mellifera L.) royal jelly production and nutritional composition[J]. Chemosphere, 2021, 263:128183
    Tamburini G, Wintermantel D, Allan M J, et al. Sulfoxaflor insecticide and azoxystrobin fungicide have no major impact on honeybees in a realistic-exposure semi-field experiment[J]. The Science of the Total Environment, 2021, 778:146084
    Caliani I, Campani T, Conti B, et al. Multi-biomarker approach and IBR index to evaluate the effects of different contaminants on the ecotoxicological status of Apis mellifera[J]. Ecotoxicology and Environmental Safety, 2021, 208:111486
    Tadei R, Menezes-Oliveira V B, Silva-Zacarin E C M. Silent effect of the fungicide pyraclostrobin on the larval exposure of the non-target organism Africanized Apis mellifera and its interaction with the pathogen Nosema ceranae in adulthood[J]. Environmental Pollution, 2020, 267:115622
    Batista A C, Domingues C E D C, Costa M J, et al. Is a strobilurin fungicide capable of inducing histopathological effects on the midgut and Malpighian tubules of honey bees?[J]. Journal of Apicultural Research, 2020, 59(5):834-843
    Carneiro L S, Martínez L C, Gonçalves W G, et al. The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers[J]. Ecotoxicology and Environmental Safety, 2020, 189:109991
    Gregorc A, Ellis J D. Cell death localization in situ in laboratory reared honey bee (Apis mellifera L.) larvae treated with pesticides[J]. Pesticide Biochemistry and Physiology, 2011, 99(2):200-207
    Zaluski R, Bittarello A C, Vieira J C S, et al. Modification of the head proteome of nurse honeybees (Apis mellifera) exposed to field-relevant doses of pesticides[J]. Scientific Reports, 2020, 10(1):2190
    Nicodemo D, Mingatto F E, Jong D D, et al. Mitochondrial respiratory inhibition promoted by pyraclostrobin in fungi is also observed in honey bees[J]. Environmental Toxicology and Chemistry, 2020, 39(6):1267-1272
    Prado A, Pioz M, Vidau C, et al. Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees[J]. The Science of the Total Environment, 2019, 650(Pt 1):1250-1260
    Mao W F, Schuler M A, Berenbaum M R. Disruption of quercetin metabolism by fungicide affects energy production in honey bees (Apis mellifera)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(10):2538-2543
    Han W S, Wang Y J, Gao J L, et al. Acute toxicity and sublethal effects of myclobutanil on respiration, flight and detoxification enzymes in Apis cerana cerana[J]. Pesticide Biochemistry and Physiology, 2018, 147:133-138
    Christen V, Krebs J, Fent K. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees (Apis mellifera) at sublethal concentrations[J]. Journal of Hazardous Materials, 2019, 377:215-226
    Degrandi-Hoffman G, Chen Y P, Watkins Dejong E, et al. Effects of oral exposure to fungicides on honey bee nutrition and virus levels[J]. Journal of Economic Entomology, 2015, 108(6):2518-2528
    Dai J J, Shu R, Liu J, et al. Transcriptome analysis of Apis mellifera under benomyl stress to discriminate the gene expression in response to development and immune systems[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2021, 56(6):594-605
    Glavinic U, Tesovnik T, Stevanovic J, et al. Response of adult honey bees treated in larval stage with prochloraz to infection with Nosema ceranae[J]. PeerJ, 2019, 7:e6325
    Shi T F, Burton S, Zhu Y J, et al. Effects of field-realistic concentrations of carbendazim on survival and physiology in forager honey bees (Hymenoptera:Apidae)[J]. Journal of Insect Science (Online), 2018, 18(4):6
    Wang K, Fan R L, Ji W N, et al. Transcriptome analysis of newly emerged honeybees exposure to sublethal carbendazim during larval stage[J]. Frontiers in Genetics, 2018, 9:426
    Wang Y H, Zhu Y C, Li W H. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.)[J]. Environmental Science and Pollution Research, 2020, 27(7):6971-6980
    李晨伊, 周欣, 郑浩. 蜜蜂肠道微生物群落研究进展[J]. 微生物学报, 2018, 58(6):1016-1024

    Li C Y, Zhou X, Zheng H. Gut microbiota of social honey bees[J]. Acta Microbiologica Sinica, 2018, 58(6):1016-1024(in Chinese)

    Kakumanu M L, Reeves A M, Anderson T D, et al. Honey bee gut microbiome is altered by in-hive pesticide exposures[J]. Frontiers in Microbiology, 2016, 7:1255
    Paris L, Peghaire E, Moné A, et al. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae[J]. Journal of Invertebrate Pathology, 2020, 172:107348
    Peghaire E, Moné A, Delbac F, et al. A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae- and pesticide-induced adverse effects[J]. Pesticide Biochemistry and Physiology, 2020, 163:138-146
    李振芳, 刘振国, 胥保华, 等. 蜜蜂行为学研究概述[J]. 蜜蜂杂志, 2019, 39(10):5-11

    Li Z F, Liu Z G, Xu B H, et al. Advances in behavioral researches of honeybee[J]. Journal of Bee, 2019, 39(10):5-11(in Chinese)

    Tosi S, Nieh J C. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto), on honeybees[J]. Proceedings Biological Sciences, 2019, 286(1900):20190433
    Migdał P, Roman A, Popiela E, et al. The impact of selected pesticides on honey bees[J]. Polish Journal of Environmental Studies, 2018, 27(2):787-792
    DesJardins N S, Fisher A 2nd, Ozturk C, et al. A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis mellifera)[J]. Environmental Pollution, 2021, 288:117720
    Decourtye A, Devillers J, Genecque E, et al. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera[J]. Archives of Environmental Contamination and Toxicology, 2005, 48(2):242-250
    Glass J R, Fisher A Ⅱ, Fewell J H, et al. Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera)[J]. Environmental Pollution, 2021, 274:116533
    Tschoeke P H, Oliveira E E, Dalcin M S, et al. Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in neotropical melon fields[J]. Environmental Pollution, 2019, 251:591-599
    Jaffe B D, Lois A N, Guédot C. Effect of fungicide on pollen foraging by honeybees (Hymenoptera:Apidae) in cranberry differs by fungicide type[J]. Journal of Economic Entomology, 2018, 112(1):499-503
    Stejskalová M, Konradyová V, Kazda J. The influence of pesticides repellency used in oilseed rape (Brassica napus subsp. napus) on the preference by bees (Apis mellifera L.)[J]. Journal of Apicultural Research, 2021, 60(2):270-276
    Manning P, Ramanaidu K, Cutler G C. Honey bee survival is affected by interactions between field-relevant rates of fungicides and insecticides used in apple and blueberry production[J]. Facets, 2017, 2(2):910-918
    Wade A, Lin C H, Kurkul C, et al. Combined toxicity of insecticides and fungicides applied to California almond orchards to honey bee larvae and adults[J]. Insects, 2019, 10(1):E20
    Tomé H V, Ramos G S, Araújo M F, et al. Agrochemical synergism imposes higher risk to neotropical bees than to honeybees[J]. Royal Society Open Science, 2017, 4(1):160866
    Johnson R M, Dahlgren L, Siegfried B D, et al. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera)[J]. PLoS One, 2013, 8(1):e54092
    Almasri H, Tavares D A, Pioz M, et al. Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees[J]. Ecotoxicology and Environmental Safety, 2020, 203:111013
    Han W S, Yang Y M, Gao J L, et al. Chronic toxicity and biochemical response of Apis cerana cerana (Hymenoptera:Apidae) exposed to acetamiprid and propiconazole alone or combined[J]. Ecotoxicology, 2019, 28(4):399-411
    Jiang X C, Wang Z W, He Q B, et al. The effect of neonicotinoid insecticide and fungicide on sugar responsiveness and orientation behavior of honey bee (Apis mellifera) in semi-field conditions[J]. Insects, 2018, 9(4):E130
    Zhu Y C, Yao J X, Adamczyk J, et al. Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera)[J]. PLoS One, 2017, 12(6):e0178421
    Zaluski R, Justulin L A Jr, Orsi R O. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera)[J]. Scientific Reports, 2017, 7(1):15217
    Domingues C E C, Abdalla F C, Balsamo P J, et al. Thiamethoxam and picoxystrobin reduce the survival and overload the hepato-nephrocitic system of the Africanized honeybee[J]. Chemosphere, 2017, 186:994-1005
    Cizelj I, Glavan G, Božič J, et al. Prochloraz and coumaphos induce different gene expression patterns in three developmental stages of the Carniolan honey bee (Apis mellifera carnica Pollmann)[J]. Pesticide Biochemistry and Physiology, 2016, 128:68-75
    李慧, 曹芳杰, 邱立红. 甲氧基丙烯酸酯类杀菌剂对水生生物的生态毒理学研究进展[J]. 农药学学报, 2019, 21(S1):831-840

    Li H, Cao F J, Qiu L H. Research progress of the ecotoxicology of strobilurins on aquatic organisms[J]. Chinese Journal of Pesticide Science, 2019, 21(S1):831-840(in Chinese)

    贾伟, 蒋红云, 张兰, 等. 4种甲氧基丙烯酸酯类杀菌剂不同剂型对斑马鱼急性毒性效应[J]. 生态毒理学报, 2016, 11(6):242-251

    Jia W, Jiang H Y, Zhang L, et al. Acute toxicity of different formulation of four strobilurin fungicides to the zebrafish (Brachydonio rerio)[J]. Asian Journal of Ecotoxicology, 2016, 11(6):242-251(in Chinese)

    中华人民共和国农业部. 农药登记环境风险评估指南第4部分:蜜蜂:NY/T 2882.4-2016[S]. 北京:中国农业出版社, 2016
    Biddinger D J, Rajotte E G. Integrated pest and pollinator management-adding a new dimension to an accepted paradigm[J]. Current Opinion in Insect Science, 2015, 10:204-209
  • 加载中
计量
  • 文章访问数:  3411
  • HTML全文浏览数:  3411
  • PDF下载数:  78
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-19
熊曼琼, 覃淦, 王梨竹, 黄少康, 李江红, 段辛乐. 杀菌剂对蜜蜂生理和行为的毒性效应研究[J]. 生态毒理学报, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002
引用本文: 熊曼琼, 覃淦, 王梨竹, 黄少康, 李江红, 段辛乐. 杀菌剂对蜜蜂生理和行为的毒性效应研究[J]. 生态毒理学报, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002
Xiong Manqiong, Qin Gan, Wang Lizhu, Huang Shaokang, Li Jianghong, Duan Xinle. Toxic Effects of Fungicides on Physiology and Behavior of Honeybee[J]. Asian journal of ecotoxicology, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002
Citation: Xiong Manqiong, Qin Gan, Wang Lizhu, Huang Shaokang, Li Jianghong, Duan Xinle. Toxic Effects of Fungicides on Physiology and Behavior of Honeybee[J]. Asian journal of ecotoxicology, 2022, 17(6): 163-175. doi: 10.7524/AJE.1673-5897.20211019002

杀菌剂对蜜蜂生理和行为的毒性效应研究

    通讯作者: 段辛乐, E-mail: xinleduan@fafu.edu.cn
    作者简介: 熊曼琼(1996-),女,硕士研究生,研究方向为蜜蜂毒理学,E-mail:2630214154@qq.com
  • 1. 福建农林大学动物科学学院(蜂学学院),福州 350002;
  • 2. 农业农村部福建蜜蜂生物学科学观测站,福州 350002
基金项目:

福建省自然科学基金资助项目(2022J01585);科技基础资源调查专项—传粉昆虫资源调查监测网建设(2018FY100402);福建省大学生创新创业训练计划立项项目(202110389159,201910389205,201810389089);福州市科技项目(KLi19001A/2019-N-3,KH190025A,KH190316A);福建农林大学科技创新专项基金项目(KFA17244A)

摘要: 杀菌剂在植物病害防治过程中被广泛应用,其在确保粮食安全中具有重要作用。作为重要的经济和授粉昆虫,蜜蜂在传粉过程中不可避免地接触到杀菌剂。含有杀菌剂残留的花蜜和花粉也会被蜜蜂采集进蜂巢,进而影响蜂群的健康和授粉效能。本文从杀菌剂自身及与其他农药的协同作用对蜜蜂毒性、生长发育、生理和行为的影响等方面进行综述,阐述杀菌剂对蜜蜂个体和群体的负面影响,以期为有害生物防治策略制定过程中考虑蜜蜂等授粉昆虫安全,建立并推广蜜蜂授粉与绿色防控增产技术集成应用,并促进我国养蜂业和授粉业的健康可持续发展提供理论依据。

English Abstract

参考文献 (89)

返回顶部

目录

/

返回文章
返回