雌激素的3D-QSAR模型构建及其预测饲料与猪肉中雌激素对人体内分泌影响的应用
Construction of 3D-QSAR Model of Estrogen and Its Effect on Human Endocrine in Pork and Feed
-
摘要: 雌激素作为环境内分泌干扰物对人体有内分泌干扰效应,影响人体健康。以雌激素受体相对亲和力(relative binding affinity,RBA)的对数表征生物活性,对雌激素进行了三维定量构效关系(3D-QSAR)计算,得到具有较好预测能力的CoMFA (q2=0.721,r2=0.925)和CoMSIA (q2=0.824,r2=0.961)模型。对全国范围内各地区猪饲料和猪肉进行了雌激素含量检测与雌激素效应评估。植物雌激素在猪饲料和猪肉中检出率为75%和92%,天然雌激素在猪饲料和猪肉中检出率均为33%,合成雌激素在猪饲料中未检出,在猪肉中检出率为33%。利用饲料和肉中植物雌激素浓度计算得出,植物雌激素从猪饲料到猪肉中的生物富集系数为0.27~8.2。对全国范围内各地区猪肉进行了雌激素风险评估,结果显示虽然雌激素风险指数显示相对安全,但香芹酚、香豆素和β-谷甾醇等植物雌激素的雌激素效应较高,应引起重视。Abstract: As an environmental endocrine disruptor, estrogen has an endocrine disrupting effect on the human body and affects human health. This paper uses the estrogen receptor relative binding affinity (RBA) to characterize the biological activity of estrogens and calculates the three-dimensional quantitative structure-activity relationship (3D-QSAR) of estrogen to obtain CoMFA (q2=0.721, r2=0.925) and CoMSIA (q2=0.824, r2=0.961) models. Estrogen concentration detection and estrogen effect evaluation were carried out on pig feed and pork in various regions of the country. Detection rate of phytoestrogens in pig feed and pork are 75% and 92%. Detection rate of natural estrogens in pig feed and pork are 33%. Synthetic estrogens were not detected in pig feed and the detection rate of synthetic estrogens in pork is 33%. The bioconcentration factor (BCF) of phytoestrogens from pig feed to pork is 0.27~8.2. An estrogen risk assessment has been conducted on pork. The results show that although the risk index indicates estrogens in pork are relatively safe, the phytoestrogens such as carvacrol, coumarin and beta-sitosterol have relatively high estrogenic effects.
-
Key words:
- estrogen /
- phytoestrogens /
- estrogen receptor /
- endocrine disrupting effects /
- 3D-QSAR
-
-
Boberg J, Mandrup K R, Jacobsen P R, et al. Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens[J]. Reproductive Toxicology, 2013, 40:41-51 Heras-González L, Latorre J A, Martinez-Bebia M, et al. The relationship of obesity with lifestyle and dietary exposure to endocrine-disrupting chemicals[J]. Food and Chemical Toxicology, 2020, 136:110983 Emara Y, Fantke P, Judson R, et al. Integrating endocrine-related health effects into comparative human toxicity characterization[J]. Science of the Total Environment, 2021, 762:143874 Fleck S C, Churchwell M I, Doerge D R, et al. Urine and serum biomonitoring of exposure to environmental estrogens Ⅱ:Soy isoflavones and zearalenone in pregnant women[J]. Food and Chemical Toxicology, 2016, 95:19-27 Robles J, Marcos J, Renau N, et al. Quantifying endogenous androgens, estrogens, pregnenolone and progesterone metabolites in human urine by gas chromatography tandem mass spectrometry[J]. Talanta, 2017, 169:20-29 Huang J, Sun J H, Chen Y H, et al. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography-tandem mass spectrometry:A case study for breast cancer[J]. Analytica Chimica Acta, 2012, 711:60-68 Adlercreutz H, Kiuru P, Rasku S, et al. An isotope dilution gas chromatographic-mass spectrometric method for the simultaneous assay of estrogens and phytoestrogens in urine[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2004, 92(5):399-411 Foster W G, Kubwabo C, Kosarac I, et al. Free bisphenol A (BPA), BPA-glucuronide (BPA-G), and total BPA concentrations in maternal serum and urine during pregnancy and umbilical cord blood at delivery[J]. Emerging Contaminants, 2019, 5:279-287 Lacroix M Z, Puel S, Collet S H, et al. Simultaneous quantification of bisphenol A and its glucuronide metabolite (BPA-G) in plasma and urine:Applicability to toxicokinetic investigations[J]. Talanta, 2011, 85(4):2053-2059 Mustafa A M, Malintan N T, Seelan S, et al. Phytoestrogens levels determination in the cord blood from Malaysia rural and urban populations[J]. Toxicology and Applied Pharmacology, 2007, 222(1):25-32 Prasain J K, Arabshahi A, Moore D R Ⅱ, et al. Simultaneous determination of 11 phytoestrogens in human serum using a 2 min liquid chromatography/tandem mass spectrometry method[J]. Journal of Chromatography B, 2010, 878(13-14):994-1002 Wyns C, Bolca S, de Keukeleire D, et al. Development of a high-throughput LC/APCI-MS method for the determination of thirteen phytoestrogens including gut microbial metabolites in human urine and serum[J]. Journal of Chromatography B, 2010, 878(13-14):949-956 黄斌, 潘学军, 万幸, 等. 固相萃取-衍生化-气相色谱/质谱测定水中类固醇类环境内分泌干扰物[J]. 分析化学, 2011, 39(4):449-454 Huang B, Pan X J, Wan X, et al. Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction-derivatization gas chromatography-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2011, 39(4):449-454(in Chinese)
Lee S H, Jung B H, Kim S Y, et al. Determination of phytoestrogens in traditional medicinal herbs using gas chromatography-mass spectrometry[J]. The Journal of Nutritional Biochemistry, 2004, 15(8):452-460 Benedetti B, di Carro M, Mirasole C, et al. Fast derivatization procedure for the analysis of phytoestrogens in soy milk by gas chromatography tandem mass spectrometry[J]. Microchemical Journal, 2018, 137:62-70 Gray S L, Lackey B R. Optimizing a recombinant estrogen receptor binding assay for analysis of herbal extracts[J]. Journal of Herbal Medicine, 2019, 15:100252 Cotterill J V, Palazzolo L, Ridgway C, et al. Predicting estrogen receptor binding of chemicals using a suite of in silico methods-Complementary approaches of (Q)SAR, molecular docking and molecular dynamics[J]. Toxicology and Applied Pharmacology, 2019, 378:114630 He J Y, Peng T, Yang X H, et al. Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor[J]. Ecotoxicology and Environmental Safety, 2018, 148:211-219 胡海山, 赵淑娥, 芦慧, 等. QuEChERS-超高效液相色谱法快速测定果蔬中4种植物激素残留[J]. 食品安全质量检测学报, 2019, 10(10):2995-2999 Hu H S, Zhao S E, Lu H, et al. Rapid determination of 4 kinds of phytohormone residues in fruits and vegetables by QuEChERS-ultra performance liquid chromatography[J]. Journal of Food Safety & Quality, 2019, 10(10):2995-2999(in Chinese)
United States Environmental Protection Agency (US EPA). CompTox, U.S. Environmental Protection Agency[DB].[2021-10-5]. https://comptox.epa.gov/dashboard/predictions/index National Center for Biotechnology Information. PubChem, National Center for Biotechnology Information[DB].[2021-09-21]. https://pubchem.ncbi.nlm.nih.gov/ 赵娜娜, 应力, 孙方云, 等. 温州市食品环境雌激素污染状况及风险评估[J]. 温州医科大学学报, 2014, 44(3):173-176 Zhao N N, Ying L, Sun F Y, et al. Contamination levels of environmental estrogens in foods and risk assessment in Wenzhou[J]. Journal of Wenzhou Medical University, 2014, 44(3):173-176(in Chinese)
Tang Z, Wan Y P, Liu Z H, et al. Twelve natural estrogens in urines of swine and cattle:Concentration profiles and importance of eight less-studied[J]. Science of the Total Environment, 2022, 803:150042 -

计量
- 文章访问数: 2354
- HTML全文浏览数: 2354
- PDF下载数: 83
- 施引文献: 0