137Cs在土壤-植物系统中的迁移及污染土壤修复技术

邵慧娟, 王金花. 137Cs在土壤-植物系统中的迁移及污染土壤修复技术[J]. 生态毒理学报, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001
引用本文: 邵慧娟, 王金花. 137Cs在土壤-植物系统中的迁移及污染土壤修复技术[J]. 生态毒理学报, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001
Shao Huijuan, Wang Jinhua. Migration of 137Cs in Soil-Plant System and Remediation Technologies of Contaminated Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001
Citation: Shao Huijuan, Wang Jinhua. Migration of 137Cs in Soil-Plant System and Remediation Technologies of Contaminated Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001

137Cs在土壤-植物系统中的迁移及污染土壤修复技术

    作者简介: 邵慧娟(1992-),女,博士,讲师,研究方向为土壤污染修复,E-mail:sharehui@foxmail.com
    通讯作者: 王金花,E-mail:wjh@sdau.edu.cn
  • 中图分类号: X171.5

Migration of 137Cs in Soil-Plant System and Remediation Technologies of Contaminated Soil

    Corresponding author: Wang Jinhua, wjh@sdau.edu.cn
  • 摘要: 核武器试验、核废料泄漏与核电站事故等造成的放射性污染是全世界关注的热点问题之一。铯-137(137Cs)作为一种半衰期长达30 a、生物毒性大且易进入食物链的放射性核素,在环境中积累后严重威胁生态系统安全和人类健康。笔者详细总结了137Cs在土壤中的分布和吸附行为、植物对137Cs的吸收转运以及137Cs污染土壤的主要修复技术,以期为我国提升放射性污染问题的应对能力提供重要参考。
  • 加载中
  • 罗恺, 李洋, 陈海龙, 等. 土壤放射性污染来源分析与修复技术[J]. 环境影响评价, 2019, 41(1):50-53

    Luo K, Li Y, Chen H L, et al. Radioactive contaminated soil's source analysis and remediation technologies[J]. Environmental Impact Assessment, 2019, 41(1):50-53(in Chinese)

    White P, Broadley M. Tansley review No. 113[J]. New Phytologist, 2000, 147:241-256
    Giannakopoulou F, Haidouti C, Chronopoulou A, et al. Sorption behavior of cesium on various soils under different pH levels[J]. Journal of Hazardous Materials, 2007, 149(3):553-556
    张琼, 王博, 王亮, 等. 切尔诺贝利和福岛核事故后放射性土壤修复研究进展[J]. 环境与可持续发展, 2016, 41(5):117-121

    Zhang Q, Wang B, Wang L, et al. Study on remediation of contaminated soil after the accident of Chernobyl and Fukushima[J]. Environment and Sustainable Development, 2016, 41(5):117-121(in Chinese)

    Burger A, Lichtscheidl I. Stable and radioactive cesium:A review about distribution in the environment, uptake and translocation in plants, plant reactions and plants' potential for bioremediation[J]. The Science of the Total Environment, 2018, 618:1459-1485
    Matsuoka K, Moritsuka N, Nukada M, et al. Continuous nitrogen fertilization retards the vertical migration of Fukushima nuclear accident-derived cesium-137 in apple orchard soil[J]. The Science of the Total Environment, 2020, 731:138903
    Matsuda N, Mikami S, Shimoura S, et al. Depth profiles of radioactive cesium in soil using a scraper plate over a wide area surrounding the Fukushima Dai-ichi Nuclear Power Plant, Japan[J]. Journal of Environmental Radioactivity, 2015, 139:427-434
    Teramage M T, Onda Y, Patin J, et al. Vertical distribution of radiocesium in coniferous forest soil after the Fukushima Nuclear Power Plant Accident[J]. Journal of Environmental Radioactivity, 2014, 137:37-45
    Koarashi J, Atarashi-Andoh M, Matsunaga T, et al. Factors affecting vertical distribution of Fukushima accident-derived radiocesium in soil under different land-use conditions[J]. Science of the Total Environment, 2012, 431:392-401
    Fujii K, Ikeda S, Akama A, et al. Vertical migration of radiocesium and clay mineral composition in five forest soils contaminated by the Fukushima Nuclear Accident[J]. Soil Science and Plant Nutrition, 2014, 60(6):751-764
    Ogura S I, Suzuki T, Saito M. Distribution of radioactive cesium in soil and its uptake by herbaceous plants in temperate pastures with different management after the Fukushima Dai-Ichi Nuclear Power Station accident[J]. Soil Science and Plant Nutrition, 2014, 60(6):790-800
    Li P R, Gong Y T, Lu W Y, et al. Radiocesium distribution caused by tillage inversion affects the soil-to-crop transfer factor and translocation in agroecosystems[J]. The Science of the Total Environment, 2022, 831:154897
    张坤, 王善强, 李战国, 等. 放射性污染土壤中铯的吸附/解吸行为研究进展[J]. 原子能科学技术, 2021, 55(3):405-416

    Zhang K, Wang S Q, Li Z G, et al. Research progress in adsorption/desorption behavior of cesium in radioactive contaminated soil[J]. Atomic Energy Science and Technology, 2021, 55(3):405-416(in Chinese)

    Kitamura A, Kurikami H, Yamaguchi M, et al. Mathematical modeling of radioactive contaminants in the Fukushima environment[J]. Nuclear Science and Engineering, 2015, 179(1):104-118
    Qian J, Zhou L, Yang X F, et al. Prussian blue analogue functionalized magnetic microgels with ionized chitosan for the cleaning of cesium-contaminated clay[J]. Journal of Hazardous Materials, 2020, 386:121965
    Murota K, Saito T, Tanaka S. Desorption kinetics of cesium from Fukushima soils[J]. Journal of Environmental Radioactivity, 2016, 153:134-140
    Park S M, Alessi D S, Baek K. Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral:A mini review[J]. Journal of Hazardous Materials, 2019, 369:569-576
    Fan Q H, Tanaka M, Tanaka K, et al. An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility[J]. Geochimica et Cosmochimica Acta, 2014, 135:49-65
    Tashiro Y, Nakao A, Wagai R, et al. Inhibition of radiocesium adsorption on 2:1 clay minerals under acidic soil environment:Effect of organic matter vs. hydroxy aluminum polymer[J]. Geoderma, 2018, 319:52-60
    Kim J H, Anwer H, Kim Y S, et al. Decontamination of radioactive cesium-contaminated soil/concrete with washing and washing supernatant- critical review[J]. Chemosphere, 2021, 280:130419
    Cornell R M. Adsorption of cesium on minerals:A review[J]. Journal of Radioanalytical and Nuclear Chemistry, 1993, 171(2):483-500
    Fesenko S, Jacob P, Ulanovsky A, et al. Justification of remediation strategies in the long term after the Chernobyl accident[J]. Journal of Environmental Radioactivity, 2013, 119:39-47
    Zhu Y G, Smolders E. Plant uptake of radiocaesium:A review of mechanisms, regulation and application[J]. Journal of Experimental Botany, 2000, 51(351):1635-1645
    Jing X U, Tang Y, Wang J. Study on the effects of cesium on photosynthesis of spinach[J]. Journal of Nuclear Agricultural Sciences, 2015, 181:123-130
    Zhang Y, Liu G J. Effects of cesium accumulation on chlorophyll content and fluorescence of Brassica juncea L.[J]. Journal of Environmental Radioactivity, 2018, 195:26-32
    Lai J L, Tao Z Y, Fu Q, et al. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings[J]. Journal of Environmental Radioactivity, 2016, 160:93-101
    Kondo M, Maeda H, Goto A, et al. Exchangeable Cs/K ratio in soil is an index to estimate accumulation of radioactive and stable Cs in rice plant[J]. Soil Science and Plant Nutrition, 2015, 61(1):133-143
    Flouret A, Henner P, Coppin F, et al. Cesium transfer to millet and mustard as a function of Cs availability in soils[J]. Journal of Environmental Radioactivity, 2022, 243:106800
    Wakabayashi S, Itoh S, Kihou N, et al. Influence of water management and fertilizer application on (137)Cs and (133)Cs uptake in paddy rice fields[J]. Journal of Environmental Radioactivity, 2016, 157:102-112
    Komínková D, Berchová-Bímová K, Součková L. Influence of potassium concentration gradient on stable caesium uptake by Calla palustris[J]. Ecotoxicology and Environmental Safety, 2018, 165:582-588
    ElShazly A A A, Abbas M H H, Farid I M, et al. Depthprofile distribution of Cs and its toxicity for canola plants grown on arid rainfed soils as affected by increasing K-inputs[J]. Ecotoxicology and Environmental Safety, 2019, 183:109529
    Aung H P, Aye Y S, Mensah A D, et al. Relations of fine-root morphology on 137Cs uptake by fourteen Brassica species[J]. Journal of Environmental Radioactivity, 2015, 150:203-212
    Nakamaru Y, Ishikawa N, Tagami K, et al. Role of soil organic matter in the mobility of radiocesium in agricultural soils common in Japan[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2007, 306(1-3):111-117
    Nikitin A N. Impact of soil moisture on cesium uptake by plants:Model assessment[J]. Journal of Environmental Radioactivity, 2021, 240:106754
    Takahashi J, Wakabayashi S, Tamura K, et al. Downward migration of radiocesium in an abandoned paddy soil after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2018, 182:157-164
    Dushenkov S, Mikheev A, Prokhnevsky A, et al. Phytoremediation of radiocesium-contaminated soil in the vicinity of Chernobyl, Ukraine[J]. Environmental Science & Technology, 1999, 33(3):469-475
    Willey N, Hall S, Mudigantia A. Assessing the potential of phytoremediation at a site in the U.K. contaminated with 137Cs[J]. International Journal of Phytoremediation, 2001, 3(3):321-333
    Bystrzejewska-Piotrowska G, Urban P L. Accumulation of cesium in leaves of Lepidium sativum and its influence on photosynthesis and transpiration[J]. Acta Biologica Cracoviensia Series Botanica, 2003, 45:131-137
    Fu Q, Lai J L, Tao Z Y, et al. Characterizations of bio-accumulations, subcellular distribution and chemical forms of cesium in Brassica juncea, and Vicia faba[J]. Journal of Environmental Radioactivity, 2016, 154:52-59
    Fujimura S, Muramatsu Y, Ohno T, et al. Accumulation of (137)Cs by rice grown in four types of soil contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident in 2011 and 2012[J]. Journal of Environmental Radioactivity, 2015, 140:59-64
    Endo S, Kajimoto T, Shizuma K. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients[J]. Journal of Environmental Radioactivity, 2013, 116:59-64
    Parajuli D, Tanaka H, Hakuta Y, et al. Dealing with the aftermath of Fukushima Daiichi Nuclear Accident:Decontamination of radioactive cesium enriched ash[J]. Environmental Science & Technology, 2013, 47(8):3800-3806
    Lin C C, Lin H L. Remediation of soil contaminated with the heavy metal (Cd2+)[J]. Journal of Hazardous Materials, 2005, 122(1-2):7-15
    White P J, Swarup K, Escobar-Gutiérrez A J, et al. Selecting plants to minimise radiocaesium in the food chain[J]. Plant and Soil, 2003, 249(1):177-186
    Moogouei R, Borghei M, Arjmandi R. Phytoremediation of stable Cs from solutions by Calendula alata, Amaranthus chlorostachys and Chenopodium album[J]. Ecotoxicology and Environmental Safety, 2011, 74(7):2036-2039
    Singh S, Thorat V, Kaushik C P, et al. Potential of Chromolaena odorata for phytoremediation of 137Cs from solution and low level nuclear waste[J]. Journal of Hazardous Materials, 2009, 162(2-3):743-745
    Tang S R, Willey N. Uptake of 134Cs by four species from the Asteraceae and two varieties from the Chenopodiaceae grown in two types of Chinese soil[J]. Plant and Soil, 2003, 250:75-81
    Wang X, Chen C, Wang J L. Bioremediation of cesium-contaminated soil by Sorghum bicolor and soil microbial community analysis[J]. Geomicrobiology Journal, 2016, 33(3-4):216-221
    Kang D J, Seo Y J, Saito T, et al. Uptake and translocation of cesium-133 in napiergrass (Pennisetum purpureum Schum.) under hydroponic conditions[J]. Ecotoxicology and Environmental Safety, 2012, 82:122-126
    YanL J, Van Le Q, Sonne C, et al. Phytoremediation of radionuclides in soil, sediments and water[J]. Journal of Hazardous Materials, 2021, 407:124771
    Fujiwara K, Takahashi T, Nguyen P, et al. Uptake and retention of radio-caesium in earthworms cultured in soil contaminated by the Fukushima Nuclear Power Plant accident[J]. Journal of Environmental Radioactivity, 2015, 139:135-139
    史岩, 斯琴图雅, 赵弘韬. 蚯蚓在放射性土壤修复中的应用研究进展[J]. 辐射研究与辐射工艺学报, 2020, 38(4):17-26

    Shi Y, Siqintuya, Zhao H T. Application of earthworms in the remediation of radioactive soil[J]. Journal of Radiation Research and Radiation Processing, 2020, 38(4):17-26(in Chinese)

    Kuwahara C, Fukumoto A, Nishina M, et al. Characteristics of cesium accumulation in the filamentous soil bacterium Streptomyces sp. K202[J]. Journal of Environmental Radioactivity, 2011, 102(2):138-144
    Zhang N, Wang D D, Liu Y P, et al. Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J]. Plant and Soil, 2014, 374(1):689-700
    Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal:A review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1):1-31
    Maturi K, Reddy K R. Extraction of mixed contaminants from different soil types[J]. Soil & Sediment Contamination, 2008, 17:586-608
    徐雷, 代惠萍, 魏树和. 淋洗剂在重金属污染土壤修复中的研究进展[J]. 中国环境科学, 2021, 41(11):5237-5244

    Xu L, Dai H P, Wei S H. Advances of washing agents in remediation of heavy metal contaminated soil[J]. China Environmental Science, 2021, 41(11):5237-5244(in Chinese)

    马妍, 王佳琪, 张丰松, 等. 铯污染土壤的淋洗修复及淋洗液的回收[J]. 环境工程学报, 2021, 15(4):1409-1416

    Ma Y, Wang J Q, Zhang F S, et al. Leaching remediation of cesium contaminated soil and recovery of leaching solution[J]. Chinese Journal of Environmental Engineering, 2021, 15(4):1409-1416(in Chinese)

    Lee J, Park S M, Jeon E K, et al. Selective and irreversible adsorption mechanism of cesium on illite[J]. Applied Geochemistry, 2017, 85:188-193
    Caron F, Laurin S, Simister C, et al. Potential use of ultrafiltration for groundwater remediation and aqueous speciation of 60Co and 137Cs from a contaminated area[J]. Water, Air, and Soil Pollution, 2007, 178(1-4):121-130
    Mao X Y, Shao X H, Zhang Z Y, et al. Mechanism and optimization of enhanced electro-kinetic remediation on 137Cs contaminated Kaolin soils:A semi-pilot study based on experimental and modeling methodology[J]. Electrochimica Acta, 2018, 284:38-51
    Kim G N, Kim S S, Park U R, et al. Decontamination of soil contaminated with cesium using electrokinetic-electrodialytic method[J]. Electrochimica Acta, 2015, 181:233-237
    Ding D H, Zhang Z Y, Lei Z F, et al. Remediation of radiocesium-contaminated liquid waste, soil, and ash:A mini review since the Fukushima Daiichi Nuclear Power Plant accident[J]. Environmental Science and Pollution Research International, 2016, 23(3):2249-2263
    Tica D, Udovic M, Lestan D. Immobilization of potentially toxic metals using different soil amendments[J]. Chemosphere, 2011, 85(4):577-583
    Shao H J, Wei Y F, Wei C J, et al. Insight into cesium immobilization in contaminated soil amended with biochar, incinerated sewage sludge ash and zeolite[J]. Environmental Technology & Innovation, 2021, 23:101587
    Shahbaz A K, AdnanRamzani P M, Saeed R, et al. Effects of biochar and zeolite soil amendments with foliar proline spray on nickel immobilization, nutritional quality and nickel concentrations in wheat[J]. Ecotoxicology and Environmental Safety, 2019, 173:182-191
    Houben D, Evrard L, Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11):1450-1457
    Shao H J, Wei Y F, Zhang F P, et al. Effects of biochars produced from coconut shell and sewage sludge on reducing the uptake of cesium by plant from contaminated soil[J]. Water, Air, & Soil Pollution, 2020, 231(11):550
    Parajuli D, Kitajima A, Takahashi A, et al. Application of Prussian blue nanoparticles for the radioactive Cs decontamination in Fukushima region[J]. Journal of Environmental Radioactivity, 2016, 151(Pt 1):233-237
    Manabe S, AdavanKiliyankil V, Kumashiro T, et al. Stabilization of Prussian blue using copper sulfate for eliminating radioactive cesium from a high pH solution and seawater[J]. Journal of Hazardous Materials, 2020, 386:121979
    Bostick B C, Vairavamurthy M A, Karthikeyan K G, et al. Cesium adsorption on clay minerals:An EXAFS spectroscopic investigation[J]. Environmental Science & Technology, 2002, 36(12):2670-2676
    Mallampati S R, Mitoma Y, Okuda T, et al. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO4] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils[J]. Journal of Hazardous Materials, 2015, 297:74-82
    Yang J H, Han A, Yoon J Y, et al. A new route to the stable capture and final immobilization of radioactive cesium[J]. Journal of Hazardous Materials, 2017, 339:73-81
    Yang Y, Cao X, Shi L F, et al. Thermal evolution effects on the properties of converting Cs-polluted soil into pollucite-base glass-ceramics for radioactive cesium immobilization[J]. Journal of Materiomics, 2021, 7(6):1335-1343
    Mao X Y, Han F X, Shao X H, et al. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil[J]. Ecotoxicology and Environmental Safety, 2016, 125:16-24
    Sawai H, Rahman I M M, Lu C, et al. Extractive decontamination of cesium-containing soil using a biodegradable aminopolycarboxylate chelator[J]. Microchemical Journal, 2017, 134:230-236
  • 加载中
计量
  • 文章访问数:  1730
  • HTML全文浏览数:  1730
  • PDF下载数:  168
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-07-27
邵慧娟, 王金花. 137Cs在土壤-植物系统中的迁移及污染土壤修复技术[J]. 生态毒理学报, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001
引用本文: 邵慧娟, 王金花. 137Cs在土壤-植物系统中的迁移及污染土壤修复技术[J]. 生态毒理学报, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001
Shao Huijuan, Wang Jinhua. Migration of 137Cs in Soil-Plant System and Remediation Technologies of Contaminated Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001
Citation: Shao Huijuan, Wang Jinhua. Migration of 137Cs in Soil-Plant System and Remediation Technologies of Contaminated Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 207-217. doi: 10.7524/AJE.1673-5897.20220727001

137Cs在土壤-植物系统中的迁移及污染土壤修复技术

    通讯作者: 王金花,E-mail:wjh@sdau.edu.cn
    作者简介: 邵慧娟(1992-),女,博士,讲师,研究方向为土壤污染修复,E-mail:sharehui@foxmail.com
  • 山东农业大学资源与环境学院, 泰安 271018

摘要: 核武器试验、核废料泄漏与核电站事故等造成的放射性污染是全世界关注的热点问题之一。铯-137(137Cs)作为一种半衰期长达30 a、生物毒性大且易进入食物链的放射性核素,在环境中积累后严重威胁生态系统安全和人类健康。笔者详细总结了137Cs在土壤中的分布和吸附行为、植物对137Cs的吸收转运以及137Cs污染土壤的主要修复技术,以期为我国提升放射性污染问题的应对能力提供重要参考。

English Abstract

参考文献 (76)

返回顶部

目录

/

返回文章
返回