围产期甲基汞暴露对子代成年大鼠神经递质代谢及学习记忆能力的影响
Effects of Perinatal Methylmercury Exposure on Neurotransmitter Metabolism and the Learning and Memory in Adult Offspring Rats
-
摘要: 本研究旨在通过建立围产期甲基汞暴露大鼠模型,探讨神经递质在甲基汞暴露致子代成年大鼠学习记忆损伤中的贡献以及其在辅助判断甲基汞致神经损伤中的作用。八臂迷宫检测子代成年大鼠学习记忆能力;液相色谱-质谱联用仪(liquid chromatography-tandem mass spectrometer, LC-MS/MS)检测子代大鼠血清神经递质水平;冷原子荧光光谱法(cold atomic fluorescence spectrometry, CVAFS)检测子代大鼠脑汞含量;pairwise Pearson相关性分析探讨子代大鼠脑汞含量、神经递质水平、学习记忆能力三者之间的关系,中介效应分析探讨神经递质在围产期甲基汞暴露致子代成年大鼠学习记忆损伤中的作用。结果显示,甲基汞染毒组子鼠工作记忆错误次数(working memory errors, WME)、参考记忆错误次数(reference memory errors, RME)较对照组显著增加,各剂量甲基汞染毒组子鼠脑汞含量均显著高于对照组,且随着染毒剂量的增加,脑汞含量逐渐升高;甲基汞染毒组血清中乙酰胆碱(acetylcholine, ACh)、5-羟色胺(5-hydroxytryptamine, 5-HT)、多巴胺(dopamine, DA)、去甲肾上腺素(noradrenaline, NA)、谷氨酸(glutamate, Glu)水平及Glu/GABA比值显著高于对照组,而肾上腺素(adrenaline, A)和γ-氨基丁酸(γ-aminobutyric acid, GABA)水平显著低于对照组。相关性分析结果显示,子鼠脑汞含量与ACh、5-HT、DA、NA、Glu以及学习记忆损伤参数WME、RME呈正相关,与A、GABA呈负相关。ACh、5-HT、DA、NA、Glu与WME呈正相关,GABA与WME呈负相关;ACh、5-HT、DA、NA、Glu与RME呈正相关,GABA与RME呈负相关。中介分析结果显,5-HT和Glu在甲基汞致子鼠WME增加中起完全中介效应作用。5-HT在甲基汞致子鼠RME增加中起完全中介效应作用;Glu在甲基汞致子鼠RME增加中存在中介效应作用,中介效应值为52.30%。多重中介效应分析结果显示,神经递质在甲基汞暴露致学习记忆能力损伤中不存在多重中介作用。综上所述,神经递质代谢紊乱参与了围产期甲基汞暴露致子代成年大鼠学习记忆能力损伤,动态观察5-HT和Glu表达可辅助判断甲基汞致神经损伤。Abstract: This study aimed to investigate the contribution of neurotransmitters to the learning and memory impairments observed in adult offspring rats exposed to methylmercury (MeHg) and the role of neurotransmitters in MeHg-induced neurological impairments. To this end, a perinatal MeHg exposure rat model was established. The eight-arm maze was used to test the learning and memory ability of adult offspring rats. CVAFS was used to detect the brain mercury content of rats and LC-MS/MS was used to detect the neurotransmitter levels. Pairwise Pearson correlation analysis was performed to analyze the linear correlation between the brain mercury content and neurotransmitter levels. Mediated effects analysis was performed to investigate the role of neurotransmitters in perinatal MeHg exposure-induced learning and memory impairment in rats. The results demonstrated that the number of working memory errors (WME) and reference memory errors (RME) of rats in the MeHg-exposed groups were significantly higher than those in the control group, and the brain mercury levels of the offspring in each MeHg-exposed group were significantly higher than those in the control group, with an increasing trend with increasing treatment dose. The serum levels of acetylcholine (ACh), 5-hydroxytryptamine (5-HT), dopamine (DA), noradrenaline (NA), glutamate (Glu) and Glu/GABA ratio were significantly higher in the MeHg group than in the control group, while the adrenaline (A) and γ-aminobutyric acid (GABA) levels were significantly lower. Correlation analysis revealed that the brain mercury content was positively correlated with the levels of ACh, 5-HT, DA, NA, Glu, and WME, RME, but negatively correlated with A and GABA. ACh, 5-HT, DA, NA and Glu were positively correlated with WME, while GABA was negatively correlated with WME. ACh, 5-HT, DA, NA and Glu were positively correlated with RME, while GABA were negatively correlated with RME. Mediation analysis results showed that 5-HT and Glu play a completely mediating roles in the increase of WME, 5-HT plays a complete mediating role in the increase of RME; Glu plays a mediating role in the increase of RME, and the mediating effect value was 52.30%. Further analysis revealed no multiple mediating effects of neurotransmitters on the relationship between MeHg treatment and learning memory impairments. In conclusion, an imbalance in neurotransmitter metabolism is involved in the effect of perinatal MeHg exposure on impaired learning and memory in adult offspring rats. 5-HT and Glu are expected to serve as biomarkers for the determination of MeHg-induced neurotoxicity.
-
Key words:
- MeHg /
- rats /
- neurotoxicity /
- brain /
- neurotransmitters
-
-
Fujimura M, Usuki F. Pregnant rats exposed to low-level methylmercury exhibit cerebellar synaptic and neuritic remodeling during the perinatal period[J]. Archives of Toxicology, 2020, 94(4):1335-1347 Rothenberg S E, Feng X B, Li P. Low-level maternal methylmercury exposure through rice ingestion and potential implications for offspring health[J]. Environmental Pollution, 2011, 159(4):1017-1022 Arbuckle T E, Fisher M, MacPherson S, et al. Maternal and early life exposure to phthalates:The plastics and personal-care products use in pregnancy (P4) study[J]. Science of the Total Environment, 2016, 551-552:344-356 Axelrad D A, Bellinger D C, Ryan L M, et al. Dose-response relationship of prenatal mercury exposure and IQ:An integrative analysis of epidemiologic data[J]. Environmental Health Perspectives, 2007, 115(4):609-615 Feng X B, Li P, Qiu G L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environmental Science & Technology, 2008, 42(1):326-332 郭佳旗, 魏颖鸿, 张慧, 等. 阿尔茨海默病发病机制及基于神经递质治疗的研究进展[J]. 医学综述, 2021, 27(19):3761-3766 Guo J Q, Wei Y H, Zhang H, et al. Research progress in pathogenesis and neurotransmitter-based therapy of Alzheimer's disease[J]. Medical Recapitulate, 2021, 27(19):3761-3766(in Chinese)
Jafari Z, Kolb B E, Mohajerani M H. Auditory dysfunction in Parkinson's disease[J]. Movement Disorders:Official Journal of the Movement Disorder Society, 2020, 35(4):537-550 Chemchem M, Chemchem A, Aydıner B, et al. Recent advances in colorimetric and fluorometric sensing of neurotransmitters by organic scaffolds[J]. European Journal of Medicinal Chemistry, 2022, 244:114820 Wang L S, Zhang M D, Tao X, et al. LC-MS/MS-based quantification of tryptophan metabolites and neurotransmitters in the serum and brain of mice[J]. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences, 2019, 1112:24-32 邓彩云, 孙宝飞, 黎健, 等. 宫内甲基汞暴露对子代大鼠学习记忆及海马区FOXP2表达的影响[J]. 环境与健康杂志, 2020, 37(7):585-589 Deng C Y, Sun B F, Li J, et al. Effects of intrauterine methylmercury exposure on learning and memory and FOXP2 expression in hippocampus of offspring rats[J]. Journal of Environment and Health, 2020, 37(7):585-589(in Chinese)
张泓, 刘建文, 颜崇淮. 二十二碳六烯酸(DHA)对甲基汞神经毒性的保护效应及机制研究进展[J]. 环境与职业医学, 2020, 37(2):187-191 Zhang H, Liu J W, Yan C H. Research progress on protective effects and mechanisms of docosahexaenoic acid (DHA) on neurotoxicity induced by methylmercury[J]. Journal of Environmental and Occupational Medicine, 2020, 37(2):187-191(in Chinese)
Antunes Dos Santos A, Ferrer B, Marques Gonçalves F, et al. Oxidative stress in methylmercury-induced cell toxicity[J]. Toxics, 2018, 6(3):47 Daré E, Fetissov S, Hökfelt T, et al. Effects of prenatal exposure to methylmercury on dopamine-mediated locomotor activity and dopamine D2 receptor binding[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2003, 367(5):500-508 张萍, 贺凯宏, 陈建平, 等. 三氯化铝在酸性环境中对斑马鱼幼鱼运动及学习记忆能力的影响[J]. 生态毒理学报, 2018, 13(5):288-295 Zhang P, He K H, Chen J P, et al. Effects of aluminum chloride on the movement and learning and memory performance of zebrafish larvae in acidic water environment[J]. Asian Journal of Ecotoxicology, 2018, 13(5):288-295(in Chinese)
Bouret S, Sara S J. Network reset:A simplified overarching theory of locus coeruleus noradrenaline function[J]. Trends in Neurosciences, 2005, 28(11):574-582 刘娜, 薛彬, 邢华, 等. 多巴胺参与的海马神经元长时程抑制在大鼠新环境探索中的作用[J]. 生理学报, 2009, 61(6):511-516 Liu N, Xue B, Xing H, et al. Dopamine-dependent long-term depression in hippocampus of rat induced by exposure to spatial novelty[J]. Acta Physiologica Sinica, 2009, 61(6):511-516(in Chinese)
Okaty B W, Commons K G, Dymecki S M. Embracing diversity in the 5-HT neuronal system[J]. Nature Reviews Neuroscience, 2019, 20(7):397-424 Ou C Y, He Y H, Sun Y, et al. Effects of sub-acute manganese exposure on thyroid hormone and glutamine (Gln)/glutamate (Glu)-γ- aminobutyric acid (GABA) cycle in serum of rats[J]. International Journal of Environmental Research and Public Health, 2019, 16(12):2157 杨柳, 贾金平, 胡卫萱, 等. 甲基汞急性暴露大鼠脑中汞蓄积及胆碱能神经递质改变的研究[J]. 环境与健康杂志, 2004, 21(2):72-74 Yang L, Jia J P, Hu W X, et al. Changes of mercury and ACh, AChE contents in rat brains after acute methylmercury chloride exposure[J]. Journal of Environment and Health, 2004, 21(2):72-74(in Chinese)
Cheng J P, Yang Y C, Hu W X, et al. Effect of methylmercury on some neurotransmitters and oxidative damage of rats[J]. Journal of Environmental Sciences, 2005(3):469-473 Mirzoian A, Luetje C W. Modulation of neuronal nicotinic acetylcholine receptors by mercury[J]. The Journal of Pharmacology and Experimental Therapeutics, 2002, 302(2):560-567 Strużyńska L, Sulkowski G. Relationships between glutamine, glutamate, and GABA in nerve endings under Pb-toxicity conditions[J]. Journal of Inorganic Biochemistry, 2004, 98(6):951-958 Arnold G L, Hyman S L, Mooney R A, et al. Plasma amino acids profiles in children with autism:Potential risk of nutritional deficiencies[J]. Journal of Autism and Developmental Disorders, 2003, 33(4):449-454 杨春艳, 侯艳, 李康. 中介分析方法及在其医学研究中的应用[J]. 中国卫生统计, 2017, 34(1):159-162 张涵, 康飞. 基于bootstrap的多重中介效应分析方法[J]. 统计与决策, 2016(5):75-78 -

计量
- 文章访问数: 1375
- HTML全文浏览数: 1375
- PDF下载数: 98
- 施引文献: 0