利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌

段连瑞, 段宇婧, 李镇镇, 苗泽丰, 佘慧, 杨涛. 利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌[J]. 生态毒理学报, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001
引用本文: 段连瑞, 段宇婧, 李镇镇, 苗泽丰, 佘慧, 杨涛. 利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌[J]. 生态毒理学报, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001
Duan Lianrui, Duan Yujing, Li Zhenzhen, Miao Zefeng, She Hui, Yang Tao. Tracing Antibiotic Resistant Bacteria from Human Feces in Water Environment Utilizing the Cross-assembly Phage[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001
Citation: Duan Lianrui, Duan Yujing, Li Zhenzhen, Miao Zefeng, She Hui, Yang Tao. Tracing Antibiotic Resistant Bacteria from Human Feces in Water Environment Utilizing the Cross-assembly Phage[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001

利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌

    作者简介: 段连瑞(1999-),女,硕士研究生,研究方向为微生物耐药基因,E-mail:duanlianrui@163.com
    通讯作者: 段宇婧(1990-),女,博士,讲师,主要研究方向为微生物耐药基因。E-mail:cathydyj@126.com;  杨涛(1975-),女,博士,教授,博士生导师,主要研究方向为肠道菌群失衡对肿瘤发生发展的影响。E-mail:yangtao056cn@162.com
  • 基金项目:

    国家自然科学基金青年项目(42107466);山西省基础研究计划(自由探索类)青年项目(20210302124498);山西省科技创新团队支持计划资助项目(202204051002030);山西医科大学校级博士启动基金项目(XD2110);山西省高等学校科技创新项目(2021L211)

  • 中图分类号: X171.5

Tracing Antibiotic Resistant Bacteria from Human Feces in Water Environment Utilizing the Cross-assembly Phage

    Corresponding authors: Duan Yujing ;  Yang Tao
  • Fund Project:
  • 摘要: 人类粪便中的耐药细菌(antibiotic resistant bacteria, ARB)及其携带的耐药基因(antibiotic resistance genes, ARGs)可以通过城市污水处理系统排放进入当地水环境,因此,快速准确地探明水环境中粪便污染及ARB情况对于保护生态系统和居民健康具有重要意义。本研究借助噬菌体crAssphage作为新型人类粪便污染特异性指示标记,采集太原市健康人群粪便、晋阳湖、汾河水库、自来水和污水处理厂的样品,首先采用实时荧光定量PCR技术检测样品中人类粪便污染指示标记crAssphage、细菌核糖体16S rRNA基因与耐药基因blaTEM-1的存在情况;其次针对各类样品进行细菌分离培养与鉴定,完成样品中blaTEM-1耐药菌株及多重耐药细菌的筛选;最后通过构建系统发育树分析菌株的进化关系,探究不同环境介质中细菌之间的相互影响。结果显示crAssphage在晋阳湖、汾河水库和污水处理厂样品中被检出,证明太原市区水环境存在人类粪便污染。本研究共分离鉴定出254株细菌,氨苄青霉素耐药细菌占比最高(74.41%),环丙沙星耐药细菌占比最低(1.97%);耐药基因blaTEM-1在各类样品的菌株中都有检出(22.83%),多重耐药细菌共有79株(31.10%)。进化关系分析表明人体肠道与水环境中的耐药细菌具有亲缘关系。上述结果表明太原市水环境受到人类粪便污染的影响,并且可能促进了ARGs和ARB的传播扩散,对人体健康产生威胁。该研究为评估太原市水环境粪便污染情况及ARB分布提供基础数据,为水环境监测保护给出科学依据。
  • 加载中
  • Cardonha A M S, Vieira R H S F, Rodrigues D P, et al. Fecal pollution in water from storm sewers and adjacent seashores in Natal, Rio Grande do Norte, Brazil [J]. International Microbiology, 2004, 7(3): 213-218
    Hamza I A, Abd-Elmaksoud S. Applicability of crAssphage as a performance indicator for viral reduction during activated sludge wastewater treatment [J]. Environmental Science and Pollution Research International, 2023, 30(17): 50723-50731
    Dutilh B E, Cassman N, McNair K, et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes [J]. Nature Communications, 2014, 5: 4498
    Yutin N, Makarova K S, Gussow A B, et al. Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut [J]. Nature Microbiology, 2018, 3(1): 38-46
    García-Aljaro C, Ballesté E, Muniesa M, et al. Determination of crAssphage in water samples and applicability for tracking human faecal pollution [J]. Microbial Biotechnology, 2017, 10(6): 1775-1780
    Crank K, Li X, North D, et al. CrAssphage abundance and correlation with molecular viral markers in Italian wastewater [J]. Water Research, 2020, 184: 116161
    Yutin N, Benler S, Shmakov S A, et al. Analysis of metagenome-assembled viral genomes from the human gut reveals diverse putative CrAss-like phages with unique genomic features [J]. Nature Communications, 2021, 12(1): 1044
    Sabar M A, Honda R, Haramoto E. CrAssphage as an indicator of human-fecal contamination in water environment and virus reduction in wastewater treatment [J]. Water Research, 2022, 221: 118827
    Chen Z Y, Duan Y J, Yin L C, et al. Unraveling the influence of human fecal pollution on antibiotic resistance gene levels in different receiving water bodies using crAssphage indicator gene [J]. Journal of Hazardous Materials, 2023, 442: 130005
    Makkaew P, Kongprajug A, Chyerochana N, et al. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters [J]. International Journal of Hygiene and Environmental Health, 2021, 238: 113859
    Jennings W C, Gálvez-Arango E, Prieto A L, et al.CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators [J]. Water Research X, 2020, 9: 100071
    Ahmed W, Payyappat S, Cassidy M, et al. Novel crAssphage marker genes as certain sewage pollution in a recreational lake receiving urban stormwater runoff [J]. Water Research, 2018, 145: 769-778
    Nam S J, Hu W S, Koo O K. Evaluation of crAssphage as a human-specific microbial source-tracking marker in the Republic of Korea [J]. Environmental Monitoring and Assessment, 2022, 194(5): 367
    Hussain H I, Aqib A I, Seleem M N, et al. Genetic basis of molecular mechanisms in β-lactam resistant Gram-negative bacteria [J]. Microbial Pathogenesis, 2021, 158: 105040
    Ginn O, Nichols D, Rocha-Melogno L, et al. Antimicrobial resistance genes are enriched in aerosols near impacted urban surface waters in La Paz, Bolivia [J]. Environmental Research, 2021, 194: 110730
    Brown-Jaque M, Calero-Cáceres W, Espinal P, et al. Antibiotic resistance genes in phage particles isolated from human faeces and induced from clinical bacterial isolates [J]. International Journal of Antimicrobial Agents, 2018, 51(3): 434-442
    Odumosu B T, Obeten H I, Bamidele T A. Incidence of multidrug-resistant Escherichia coli harbouring blaTEM and tetA genes isolated from seafoods in Lagos Nigeria [J]. Current Microbiology, 2021, 78(6): 2414-2419
    Sib E, Voigt A M, Wilbring G, et al. Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks [J]. International Journal of Hygiene and Environmental Health, 2019, 222(4): 655-662
    Brown M G, Balkwill D L. Antibiotic resistance in bacteria isolated from the deep terrestrial subsurface [J]. Microbial Ecology, 2009, 57(3): 484-493
    Vaz-Moreira I, Nunes O C, Manaia C M. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water [J]. The Science of the Total Environment, 2012, 426: 366-374
    Silby M W, Winstanley C, Godfrey S A C, et al. Pseudomonas genomes: Diverse and adaptable [J]. FEMS Microbiology Reviews, 2011, 35(4): 652-680
    Adhimi R, Tayh G, Ghariani S, et al. Distribution, diversity and antibiotic resistance of Pseudomonas spp. isolated from the water dams in the north of Tunisia [J]. Current Microbiology, 2022, 79(7): 188
    Spiers A J, Buckling A, Rainey P B. The causes of Pseudomonas diversity [J]. Microbiology, 2000, 146 ( Pt 10): 2345-2350
    Speert D P, Campbell M E, Henry D A, et al. Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada [J]. American Journal of Respiratory and Critical Care Medicine, 2002, 166(7): 988-993
    Lamas Ferreiro J L, Álvarez Otero J, González González L, et al. Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors [J]. PLoS One, 2017, 12(5): e0178178
    Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors [J]. International Journal of Molecular Sciences, 2021, 22(6): 3128
    Diggle S P, Whiteley M. Microbe Profile: Pseudomonas aeruginosa: Opportunistic pathogen and lab rat [J]. Microbiology, 2020, 166(1): 30-33
    Müller H, Sib E, Gajdiss M, et al. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters [J]. FEMS Microbiology Ecology, 2018, 94(5). doi: 10.1093/femsec/fiy057.
    贺晨湧. 太原市地表水体污染状况分析及其防治对策[J]. 企业技术开发, 2017, 36(11): 98-99

    , 125 He C Y. Analysis of surface water pollution in Taiyuan and its control measures [J]. Technological Development of Enterprise, 2017, 36(11): 98-99, 125 (in Chinese)

    Stachler E, Kelty C, Sivaganesan M, et al. Quantitative crAssphage PCR assays for human fecal pollution measurement [J]. Environmental Science & Technology, 2017, 51(16): 9146-9154
    Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation [J]. Environmental Science & Technology, 2014, 48(16): 9079-9085
    Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3435-3440
    Galperin M Y, Fernández-Suárez X M. The 2012 nucleic acids research database issue and the online molecular biology database collection [J]. Nucleic Acids Research, 2012, 40(D1): D1-D8
    Benson D A, Karsch-Mizrachi I, Lipman D J, et al. GenBank [J]. Nucleic Acids Research, 2011, 39(suppl.1): D32-D37
    于明琪, 钟传青, 周英萍, 等. 乡镇医院污水环境中抗生素耐药细菌的分离与分析[J]. 环境生态学, 2021, 3(6): 74-78

    Yu M Q, Zhong C Q, Zhou Y P, et al. Isolation and analysis of antibiotic-resistant bacteria in sewage environment of township hospitals [J]. Environmental Ecology, 2021, 3(6): 74-78 (in Chinese)

    胡涛, 宋籽霖, 谷洁, 等. 牛粪沼渣中多重耐药细菌的环境风险[J]. 水土保持学报, 2023, 37(6): 350-357

    Hu T, Song Z L, Gu J, et al. Study on environmental risks of multidrug-resistant bacteria in biogas residue of cattle manure [J]. Journal of Soil and Water Conservation, 2023, 37(6): 350-357 (in Chinese)

    Looft T, Johnson T A, Allen H K, et al. In-feed antibiotic effects on the swine intestinal microbiome [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(5): 1691-1696
    Washburne A D, Morton J T, Sanders J, et al. Methods for phylogenetic analysis of microbiome data [J]. Nature Microbiology, 2018, 3(6): 652-661
    Lalucat J, Mulet M, Gomila M, et al. Genomics in bacterial taxonomy: Impact on the genus Pseudomonas [J]. Genes, 2020, 11(2): 139
    Su Q, Liu Q, Zhang L, et al. Antibiotics and probiotics impact gut antimicrobial resistance gene reservoir in COVID-19 patients [J]. Gut Microbes, 2022, 14(1): 2128603
    Yang Y Y, Song W J, Lin H, et al. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis [J]. Environment International, 2018, 116: 60-73
    Zheng D S, Yin G Y, Liu M, et al. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China’s Estuaries [J]. Environmental Pollution, 2022, 301: 119015
    Meuchi Y, Nakada M, Kuroda K, et al. Applicability of F-specific bacteriophage subgroups, PMMoV and crAssphage as indicators of source specific fecal contamination and viral inactivation in rivers in Japan [J]. PLoS One, 2023, 18(7): e0288454
    Sta Ana K M, Madriaga J, Espino M P. β-lactam antibiotics and antibiotic resistance in Asian Lakes and rivers: An overview of contamination, sources and detection methods [J]. Environmental Pollution, 2021, 275: 116624
    Wang J Q, Xu S Q, Zhao K, et al. Risk control of antibiotics, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) during sewage sludge treatment and disposal: A review [J]. The Science of the Total Environment, 2023, 877: 162772
  • 加载中
计量
  • 文章访问数:  215
  • HTML全文浏览数:  215
  • PDF下载数:  140
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-08
段连瑞, 段宇婧, 李镇镇, 苗泽丰, 佘慧, 杨涛. 利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌[J]. 生态毒理学报, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001
引用本文: 段连瑞, 段宇婧, 李镇镇, 苗泽丰, 佘慧, 杨涛. 利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌[J]. 生态毒理学报, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001
Duan Lianrui, Duan Yujing, Li Zhenzhen, Miao Zefeng, She Hui, Yang Tao. Tracing Antibiotic Resistant Bacteria from Human Feces in Water Environment Utilizing the Cross-assembly Phage[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001
Citation: Duan Lianrui, Duan Yujing, Li Zhenzhen, Miao Zefeng, She Hui, Yang Tao. Tracing Antibiotic Resistant Bacteria from Human Feces in Water Environment Utilizing the Cross-assembly Phage[J]. Asian Journal of Ecotoxicology, 2024, 19(4): 100-111. doi: 10.7524/AJE.1673-5897.20240308001

利用交叉组装噬菌体示踪水环境中人源粪便来源的耐药细菌

    通讯作者: 段宇婧(1990-),女,博士,讲师,主要研究方向为微生物耐药基因。E-mail:cathydyj@126.com;  杨涛(1975-),女,博士,教授,博士生导师,主要研究方向为肠道菌群失衡对肿瘤发生发展的影响。E-mail:yangtao056cn@162.com
    作者简介: 段连瑞(1999-),女,硕士研究生,研究方向为微生物耐药基因,E-mail:duanlianrui@163.com
  • 1. 山西医科大学基础医学院生物化学与分子生物学教研室, 太原 030001;
  • 2. 山西医科大学肿瘤免疫与靶向药物研发山西省高校重点实验室, 太原 030001;
  • 3. 山西医科大学煤炭环境致病与防治教育部重点实验室, 太原 030001;
  • 4. 太原工业学院环境与安全工程系, 太原 030018
基金项目:

国家自然科学基金青年项目(42107466);山西省基础研究计划(自由探索类)青年项目(20210302124498);山西省科技创新团队支持计划资助项目(202204051002030);山西医科大学校级博士启动基金项目(XD2110);山西省高等学校科技创新项目(2021L211)

摘要: 人类粪便中的耐药细菌(antibiotic resistant bacteria, ARB)及其携带的耐药基因(antibiotic resistance genes, ARGs)可以通过城市污水处理系统排放进入当地水环境,因此,快速准确地探明水环境中粪便污染及ARB情况对于保护生态系统和居民健康具有重要意义。本研究借助噬菌体crAssphage作为新型人类粪便污染特异性指示标记,采集太原市健康人群粪便、晋阳湖、汾河水库、自来水和污水处理厂的样品,首先采用实时荧光定量PCR技术检测样品中人类粪便污染指示标记crAssphage、细菌核糖体16S rRNA基因与耐药基因blaTEM-1的存在情况;其次针对各类样品进行细菌分离培养与鉴定,完成样品中blaTEM-1耐药菌株及多重耐药细菌的筛选;最后通过构建系统发育树分析菌株的进化关系,探究不同环境介质中细菌之间的相互影响。结果显示crAssphage在晋阳湖、汾河水库和污水处理厂样品中被检出,证明太原市区水环境存在人类粪便污染。本研究共分离鉴定出254株细菌,氨苄青霉素耐药细菌占比最高(74.41%),环丙沙星耐药细菌占比最低(1.97%);耐药基因blaTEM-1在各类样品的菌株中都有检出(22.83%),多重耐药细菌共有79株(31.10%)。进化关系分析表明人体肠道与水环境中的耐药细菌具有亲缘关系。上述结果表明太原市水环境受到人类粪便污染的影响,并且可能促进了ARGs和ARB的传播扩散,对人体健康产生威胁。该研究为评估太原市水环境粪便污染情况及ARB分布提供基础数据,为水环境监测保护给出科学依据。

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回