分子动力学模拟揭示PFAS诱导PPARα激活的分子机制

陈欢, 何家乐, 肖子君, 苏利浩, 陈景文. 分子动力学模拟揭示PFAS诱导PPARα激活的分子机制[J]. 生态毒理学报, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002
引用本文: 陈欢, 何家乐, 肖子君, 苏利浩, 陈景文. 分子动力学模拟揭示PFAS诱导PPARα激活的分子机制[J]. 生态毒理学报, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002
Chen Huan, He Jiale, Xiao Zijun, Su Lihao, Chen Jingwen. Molecular Dynamics Simulation Reveals the Molecular Mechanism of PFAS-induced PPARα Activation[J]. Asian journal of ecotoxicology, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002
Citation: Chen Huan, He Jiale, Xiao Zijun, Su Lihao, Chen Jingwen. Molecular Dynamics Simulation Reveals the Molecular Mechanism of PFAS-induced PPARα Activation[J]. Asian journal of ecotoxicology, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002

分子动力学模拟揭示PFAS诱导PPARα激活的分子机制

    作者简介: 陈欢(1998—),男,硕士研究生,研究方向为计算毒理学,E-mail: huan_chen98@mail.dlut.edu.cn
    通讯作者: 陈景文(1969—),男,博士,教授,主要研究方向为新污染物治理技术、环境计算毒理学和化学品风险预测技术。E-mail:jwchen@dlut.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(22136001);国家重点研发计划项目(2022YFC3902100)

  • 中图分类号: X171.5

Molecular Dynamics Simulation Reveals the Molecular Mechanism of PFAS-induced PPARα Activation

    Corresponding author: Chen Jingwen, jwchen@dlut.edu.cn
  • Fund Project:
  • 摘要: 全/多氟烷基化合物(PFAS)可通过激活过氧化物酶体增殖物激活受体α (PPARα)诱导肝毒性,然而PFAS与PPARα相互作用的分子机制尚不清晰。本研究基于高斯加速分子动力学(GaMD)和分子力学-广义波恩表面积法(MM-GBSA),计算了7种传统和新型PFAS与PPARα的结合自由能(ΔGbind),结果发现ΔGbind与PFAS激活PPARα的半数效应浓度的对数值(logEC50)之间存在显著的相关性(r=0.82, P<0.05)。此外,氟化碳原子的数量与ΔGbind正相关,且含羧基的PFAS的ΔGbind通常比含磺酸基的PFAS更低。通过分析结构稳定性、氢键分布和配体-残基接触,揭示了PFAS的激活活性与其在PPARα口袋内的结合模式直接相关。活性较强的PFAS,优先结合到由螺旋(H) H3, H7, H11和H12组成的口袋中,与ILE354, HIS440和CYS276等关键残基形成相互作用。结果有助于筛选具有PPARα激活效应的PFAS,支持PFAS类化学品的毒性效应评估。
  • 加载中
  • Glüge J, Scheringer M, Cousins I T, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS) [J]. Environmental Science Processes & Impacts, 2020, 22(12): 2345-2373
    Kotlarz N, McCord J, Collier D, et al. Measurement of novel, drinking water-associated PFAS in blood from adults and children in Wilmington, North Carolina [J]. Environmental Health Perspectives, 2020, 128(7): 77005
    Ding G H, Xue H H, Yao Z W, et al. Occurrence and distribution of perfluoroalkyl substances (PFASs) in the water dissolved phase and suspended particulate matter of the Dalian Bay, China [J]. Chemosphere, 2018, 200: 116-123
    Khan E A, Grønnestad R, Krøkje Å, et al. Alteration of hepato-lipidomic homeostasis in A/J mice fed an environmentally relevant PFAS mixture [J]. Environment International, 2023, 173: 107838
    Murase W, Kubota A, Ikeda-Araki A, et al. Effects of perfluorooctanoic acid (PFOA) on gene expression profiles via nuclear receptors in HepaRG cells: Comparative study with in vitro transactivation assays [J]. Toxicology, 2023, 494: 153577
    Yang W, Ling X, He S J, et al. PPARα/ACOX1 as a novel target for hepatic lipid metabolism disorders induced by per- and polyfluoroalkyl substances: An integrated approach [J]. Environment International, 2023, 178: 108138
    Li C H, Ren X M, Ruan T, et al. Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate [J]. Environmental Science & Technology, 2018, 52(5): 3232-3239
    Bougarne N, Weyers B, Desmet S J, et al. Molecular actions of PPARα in lipid metabolism and inflammation [J]. Endocrine Reviews, 2018, 39(5): 760-802
    Maeda K, Hirano M, Hayashi T, et al. Elucidating key characteristics of PFAS binding to human peroxisome proliferator-activated receptor alpha: An explainable machine learning approach [J]. Environmental Science & Technology, 2024, 58(1): 488-497
    朱婧涵, 薛峤, 刘娴, 等. p,p’-DDE与雄激素受体突变体H874Y及T877A激动性作用机制的理论研究[J]. 生态毒理学报, 2017, 12(3): 214-224

    Zhu J H, Xue Q, Liu X, et al. Theoretical investigation on agonism mechanism of p,p’-DDE via interacting with androgen receptor mutants H874Y and T877A [J]. Asian Journal of Ecotoxicology, 2017, 12(3): 214-224(in Chinese)

    Tan H Y, Wang X X, Hong H X, et al. Structures of endocrine-disrupting chemicals determine binding to and activation of the estrogen receptor α and androgen receptor [J]. Environmental Science & Technology, 2020, 54(18): 11424-11433
    Guan R N, Luan F, Li N Q, et al. Identification of molecular initiating events and key events leading to endocrine disrupting effects of PFOA: Integrated molecular dynamic, transcriptomic, and proteomic analyses [J]. Chemosphere, 2022, 307(Pt 2): 135881
    Brown P J, Stuart L W, Hurley K P, et al. Identification of a subtype selective human PPARalpha agonist through parallel-array synthesis [J]. Bioorganic & Medicinal Chemistry Letters, 2001, 11(9): 1225-1227
    Nielsen G, Heiger-Bernays W J, Schlezinger J J, et al. Predicting the effects of per- and polyfluoroalkyl substance mixtures on peroxisome proliferator-activated receptor alpha activity in vitro [J]. Toxicology, 2022, 465: 153024
    Muegge I, Hu Y. Recent advances in alchemical binding free energy calculations for drug discovery [J]. ACS Medicinal Chemistry Letters, 2023, 14(3): 244-250
    Tian C, Kasavajhala K, Belfon K A A, et al. ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution [J]. Journal of Chemical Theory and Computation, 2020, 16(1): 528-552
    He X B, Man V H, Yang W, et al. A fast and high-quality charge model for the next generation general AMBER force field [J]. The Journal of Chemical Physics, 2020, 153(11): 114502
    Jakalian A, Jack D B, Bayly C I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: Ⅱ. Parameterization and validation [J]. Journal of Computational Chemistry, 2002, 23(16): 1623-1641
    Götz A W, Williamson M J, Xu D, et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born [J]. Journal of Chemical Theory and Computation, 2012, 8(5): 1542-1555
    Elber R, Ruymgaart A P, Hess B. SHAKE parallelization [J]. The European Physical Journal Special Topics, 2011, 200(1): 211-223
    Harvey M J, De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU hardware [J]. Journal of Chemical Theory and Computation, 2009, 5(9): 2371-2377
    Miao Y L, Feher V A, McCammon J A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation [J]. Journal of Chemical Theory and Computation, 2015, 11(8): 3584-3595
    Roe D R, Cheatham T E 3rd. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data [J]. Journal of Chemical Theory and Computation, 2013, 9(7): 3084-3095
    Madhu M K, Shewani K, Murarka R K. Biased signaling in mutated variants of β2-adrenergic receptor: Insights from molecular dynamics simulations [J]. Journal of Chemical Information and Modeling, 2024, 64(2): 449-469
    Mays S G, Hercules D, Ortlund E A, et al. The nuclear receptor LRH-1 discriminates between ligands using distinct allosteric signaling circuits [J]. Protein Science, 2023, 32(10): e4754
    Rastelli G, del Rio A, Degliesposti G, et al. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA [J]. Journal of Computational Chemistry, 2010, 31(4): 797-810
    Lai T T, Eken Y, Wilson A K. Binding of per- and polyfluoroalkyl substances to the human pregnane X receptor [J]. Environmental Science & Technology, 2020, 54(24): 15986-15995
    Rosenmai A K, Ahrens L, le Godec T, et al. Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells [J]. Journal of Applied Toxicology, 2018, 38(2): 219-226
    Apaza Ticona L, Sánchez Sánchez-Corral J, Flores Sepúlveda A, et al. Novel 1,2,4-oxadiazole compounds as PPAR-α ligand agonists: A new strategy for the design of antitumour compounds [J]. RSC Medicinal Chemistry, 2023, 14(7): 1377-1388
    Ishibashi H, Hirano M, Kim E Y, et al. In vitro and in silico evaluations of binding affinities of perfluoroalkyl substances to Baikal seal and human peroxisome proliferator-activated receptor α [J]. Environmental Science & Technology, 2019, 53(4): 2181-2188
    Kamata S, Oyama T, Saito K, et al. PPARα ligand-binding domain structures with endogenous fatty acids and fibrates [J]. iScience, 2020, 23(11): 101727
  • 加载中
计量
  • 文章访问数:  2593
  • HTML全文浏览数:  2593
  • PDF下载数:  265
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-03-22
陈欢, 何家乐, 肖子君, 苏利浩, 陈景文. 分子动力学模拟揭示PFAS诱导PPARα激活的分子机制[J]. 生态毒理学报, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002
引用本文: 陈欢, 何家乐, 肖子君, 苏利浩, 陈景文. 分子动力学模拟揭示PFAS诱导PPARα激活的分子机制[J]. 生态毒理学报, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002
Chen Huan, He Jiale, Xiao Zijun, Su Lihao, Chen Jingwen. Molecular Dynamics Simulation Reveals the Molecular Mechanism of PFAS-induced PPARα Activation[J]. Asian journal of ecotoxicology, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002
Citation: Chen Huan, He Jiale, Xiao Zijun, Su Lihao, Chen Jingwen. Molecular Dynamics Simulation Reveals the Molecular Mechanism of PFAS-induced PPARα Activation[J]. Asian journal of ecotoxicology, 2024, 19(3): 1-8. doi: 10.7524/AJE.1673-5897.20240322002

分子动力学模拟揭示PFAS诱导PPARα激活的分子机制

    通讯作者: 陈景文(1969—),男,博士,教授,主要研究方向为新污染物治理技术、环境计算毒理学和化学品风险预测技术。E-mail:jwchen@dlut.edu.cn
    作者简介: 陈欢(1998—),男,硕士研究生,研究方向为计算毒理学,E-mail: huan_chen98@mail.dlut.edu.cn
  • 工业生态与环境工程教育部重点实验室, 大连市化学品风险防控及污染防治技术重点实验室, 大连理工大学环境学院, 大连 116024
基金项目:

国家自然科学基金资助项目(22136001);国家重点研发计划项目(2022YFC3902100)

摘要: 全/多氟烷基化合物(PFAS)可通过激活过氧化物酶体增殖物激活受体α (PPARα)诱导肝毒性,然而PFAS与PPARα相互作用的分子机制尚不清晰。本研究基于高斯加速分子动力学(GaMD)和分子力学-广义波恩表面积法(MM-GBSA),计算了7种传统和新型PFAS与PPARα的结合自由能(ΔGbind),结果发现ΔGbind与PFAS激活PPARα的半数效应浓度的对数值(logEC50)之间存在显著的相关性(r=0.82, P<0.05)。此外,氟化碳原子的数量与ΔGbind正相关,且含羧基的PFAS的ΔGbind通常比含磺酸基的PFAS更低。通过分析结构稳定性、氢键分布和配体-残基接触,揭示了PFAS的激活活性与其在PPARα口袋内的结合模式直接相关。活性较强的PFAS,优先结合到由螺旋(H) H3, H7, H11和H12组成的口袋中,与ILE354, HIS440和CYS276等关键残基形成相互作用。结果有助于筛选具有PPARα激活效应的PFAS,支持PFAS类化学品的毒性效应评估。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回