高等植物、燃煤和机动车排放正构烷烃特征分析

胡冬梅, 彭林, 白慧玲, 牟玲, 韩锋, 宋翀芳, 张鹏九. 高等植物、燃煤和机动车排放正构烷烃特征分析[J]. 环境化学, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002
引用本文: 胡冬梅, 彭林, 白慧玲, 牟玲, 韩锋, 宋翀芳, 张鹏九. 高等植物、燃煤和机动车排放正构烷烃特征分析[J]. 环境化学, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002
HU Dongmei, PENG Lin, BAI Huiling, MU Ling, HAN Feng, SONG Chongfang, ZHANG Pengjiu. Characteristics of n-alkanes emissions from higher plants, coal ashes and vehicles[J]. Environmental Chemistry, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002
Citation: HU Dongmei, PENG Lin, BAI Huiling, MU Ling, HAN Feng, SONG Chongfang, ZHANG Pengjiu. Characteristics of n-alkanes emissions from higher plants, coal ashes and vehicles[J]. Environmental Chemistry, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002

高等植物、燃煤和机动车排放正构烷烃特征分析

  • 基金项目:

    国家自然科学基金项目(41173002,51108295)资助.

Characteristics of n-alkanes emissions from higher plants, coal ashes and vehicles

  • Fund Project:
  • 摘要: 采集高等植物、煤烟尘和机动车尾气尘样品,利用GC-MS测定正构烷烃,分析了其源成分谱组成和排放特征.结果表明,高等植物、煤烟尘和机动车尾气尘正构烷烃总含量分别为47.78—305.56 μg·g-1、0.35—20.94 μg·g-1和3.87—351.06 μg·m-3.煤烟尘以低碳数(≤n-C20)为主,高等植物以高碳数 (≥n-C25)为主,而机动车尾气尘则介于上述二者之间(n-C20— n-C25);主峰碳对总烷烃浓度贡献率平均为42.99%、14.99%和20.69%,高等植物排放总烷烃中主峰碳贡献率明显高于化石燃料燃烧排放.植物蜡质烷烃组分随环境压力的增大总含量增加;同一纬度地区植物类型是影响平均碳链长度(ACL)的重要因素.家用燃煤排放正构烷烃高于工业排放,但各燃煤灰中烷烃分布特征相似,呈前峰型分布.柴油车尾气尘中总正构烷烃含量是汽油车的90.71倍,天然气尾气尘烷烃排放水平介于二者之间;柴油车尾气以n-C22为主峰碳,呈正态分布,而汽油和天然气车呈后峰型;天然气和柴油车尾气中未分解复杂混合物(UCM)丰度明显高于汽油车.各类源正构烷烃成分谱的建立,可为准确解析环境空气中正构烷烃来源提供基础依据.
  • 加载中
  • [1] 王娟, 钟宁宁, 栾媛, 等. 鄂尔多斯市秋季大气PM2.5、PM10颗粒物中正构烷烃的组成分布与来源特征[J]. 环境科学学报, 2007, 27(11): 1915-1923
    [2] Simoneit B R T. Organic matter in eolian dusts over the Atlantic Ocean[J]. Marine Chemistry, 1977, 5(4/6): 443-464
    [3] Duan F K, He K B, Liu X D. Characteristics and source identification of fine particulate n-alkanes in Beijing, China[J]. Journal of Environmental Science, 2010, 22(7): 998-1005
    [4] 汤国才, 柳庸行. 气溶胶中正构烷烃的碳优先指数研究[J]. 环境化学, 1992, 11(6): 21-25
    [5] Cecinato A,Marino F,Di Filippo P,et al. Distribution of n-alkanes, polynuclear aromatic hydrocarbons and nitrated polynuclear aromatic hydrocarbons between the fine and coarse fractions of inhalable atmospheric particulates[J]. Journal of Chromatography A, 1999, 846(1/2): 255-264
    [6] 成玉, 盛国英, 闵育顺, 等. 珠江三角洲气溶胶中正构烷烃分布规律、来源及其时空变化[J]. 环境科学学报, 1999, 19(1): 96-100
    [7] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles[J]. Environmental Science & Technology, 2002, 36(6): 1169-1180
    [8] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks[J]. Environmental Science & Technology, 1999, 33(10): 1578-1587
    [9] Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling[J]. Environmental Science & Technology, 1999, 33(10): 1566-1577
    [10] Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 5. Natural gas home appliances[J]. Environmental Science & Technology, 1993, 27(13): 2736-2744
    [11] Hietala T, Laakso S, Rosenqvist H. Epicuticular waxes of Salix species in relation to their overwintering survival and biomass productivity[J]. Phytochemistry, 1995, 40(1): 23-27
    [12] Nguyen Tu T T, Derenne S, Largeau C, et al. Evolution of the chemical composition of Ginkgo biloba external and internal leaf lipids through senescence and litter formation[J]. Organic Geochemistry, 2001, 32(1): 45-55
    [13]
    [14] 胡冬梅, 彭林, 白慧玲, 等. 太原市空气颗粒物中正构烷烃分布特征及来源解析[J]. 环境科学, 2013, 34(10): 3733-3740
    [15] 饶志国, 吴翼, 朱照宇, 等. 长链正构烷烃主峰碳数作为判别草本和木本植物指标的讨论: 来自表土和现代植物的证据[J]. 科学通报, 2011, 56(10): 765-780
    [16] 刘惠永, 孙志宽, 孙俊民, 等. 燃煤排放正构烷烃类有机化合物的特征与形成演化机理研究[J]. 热能动力工程, 2003, 18(1): 35-38
    [17] 堀口博, 刘文宗, 张凤臣, 等. 公害与毒物、危险物(有机篇)[M]. 北京: 石油化学工业出版社, 1978: 2-8
    [18] Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments—Ⅱ[J]. Organic Geochemistry, 1987, 11(6): 513-527
    [19] Casal H L, Moyna P. Components of Ginkgo biloba leaf wax[J]. Phytochemistry, 1979, 18: 1738-1739
    [20] Gvlz P G, Mvller E, Schmitz K. Chemical composition and surface structures of epicuticular leaf waxes of Ginkgo biloba, Magnolia grandiflora and Liriodendron tulipifera,Zeitschrift fur Naturforschung,Section C[J]. Biosciences, 1992, 47: 516-526
    [21] Teece M A, Zengeya T, Volk T A, et al. Cuticular wax composition of Salix varieties in relation to biomass productivity[J]. Phytochemistry, 2008, 69(2): 396-402
    [22] 白艳, 方小敏, 聂军胜, 等. 贡嘎山和昆仑山表土中甲氧基脂肪酸的生态指示意义[J]. 科学通报, 2010, 55(15): 1501-1511
    [23] 崔景伟, 黄俊华, 谢树成. 湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J]. 科学通报, 2008, 53(11): 1318-1323
    [24] 彭林, 陈名梁, 段毅. 太原市大气颗粒物中正构烷烃的分布特征及环境意义[J]. 沉积学报, 1999, 17(S1): 836-839
    [25] Inno S. Effect of leaf age on epicuticular wax alkanes in Rhododendron[J]. Phytochemistry, 1983, 22(2): 461-463
    [26] Bi X h, Simoneit B R T, Sheng G Y, et al. Characterization of molecular markers in smoke from residential coal combustion in China[J]. Fuel, 2008, 87(1): 112-119
    [27] 梁丽明, 彭林, 张春梅, 等. 烟尘、汽车尾气颗粒物中有机质的成分特征[J]. 中国环境监测, 2000, 16(4): 47-49
    [28] Oros D R, Simoneit B R T. Identification and emission rates of molecular tracers in coal smoke particulate matter[J]. Fuel, 2000, 79: 515-36
    [29] Grimmer G, Jacob J, Naujack KW. Profile of the polycyclic aromatic compounds from crude oils-inventory by GC, GC/MS. PAH in environmental materials: Part 3 fresenius A[J]. Analytical Chemistry, 1983, 316: 29-36
    [30] Kerminen V M, Mäkelä T E, Ojanen C H, et al. Characterization of the particulate phase in the exhaust from a diesel car[J]. Environmental Science & Technology, 1997, 31: 1883-1889
    [31] Fujitani Y, Saitoh K, Fushimi A, et al. Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust [J]. Atmospheric Environment, 2012, 59: 389-397
    [32] 徐寿昌. 有机化学[M]. 北京: 高等教育出版社, 1993: 29-30
  • 加载中
计量
  • 文章访问数:  1335
  • HTML全文浏览数:  1335
  • PDF下载数:  644
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-05-08
胡冬梅, 彭林, 白慧玲, 牟玲, 韩锋, 宋翀芳, 张鹏九. 高等植物、燃煤和机动车排放正构烷烃特征分析[J]. 环境化学, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002
引用本文: 胡冬梅, 彭林, 白慧玲, 牟玲, 韩锋, 宋翀芳, 张鹏九. 高等植物、燃煤和机动车排放正构烷烃特征分析[J]. 环境化学, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002
HU Dongmei, PENG Lin, BAI Huiling, MU Ling, HAN Feng, SONG Chongfang, ZHANG Pengjiu. Characteristics of n-alkanes emissions from higher plants, coal ashes and vehicles[J]. Environmental Chemistry, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002
Citation: HU Dongmei, PENG Lin, BAI Huiling, MU Ling, HAN Feng, SONG Chongfang, ZHANG Pengjiu. Characteristics of n-alkanes emissions from higher plants, coal ashes and vehicles[J]. Environmental Chemistry, 2014, 33(5): 716-723. doi: 10.7524/j.issn.0254-6108.2014.05.002

高等植物、燃煤和机动车排放正构烷烃特征分析

  • 1. 太原理工大学环境科学与工程学院, 太原, 030024
基金项目:

国家自然科学基金项目(41173002,51108295)资助.

摘要: 采集高等植物、煤烟尘和机动车尾气尘样品,利用GC-MS测定正构烷烃,分析了其源成分谱组成和排放特征.结果表明,高等植物、煤烟尘和机动车尾气尘正构烷烃总含量分别为47.78—305.56 μg·g-1、0.35—20.94 μg·g-1和3.87—351.06 μg·m-3.煤烟尘以低碳数(≤n-C20)为主,高等植物以高碳数 (≥n-C25)为主,而机动车尾气尘则介于上述二者之间(n-C20— n-C25);主峰碳对总烷烃浓度贡献率平均为42.99%、14.99%和20.69%,高等植物排放总烷烃中主峰碳贡献率明显高于化石燃料燃烧排放.植物蜡质烷烃组分随环境压力的增大总含量增加;同一纬度地区植物类型是影响平均碳链长度(ACL)的重要因素.家用燃煤排放正构烷烃高于工业排放,但各燃煤灰中烷烃分布特征相似,呈前峰型分布.柴油车尾气尘中总正构烷烃含量是汽油车的90.71倍,天然气尾气尘烷烃排放水平介于二者之间;柴油车尾气以n-C22为主峰碳,呈正态分布,而汽油和天然气车呈后峰型;天然气和柴油车尾气中未分解复杂混合物(UCM)丰度明显高于汽油车.各类源正构烷烃成分谱的建立,可为准确解析环境空气中正构烷烃来源提供基础依据.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回