酸碱气体对氯代芳烃削减的影响

刘莎, 黄学敏, 黄林艳, 孙丽芳, 黎烈武, 刘烨煊, 苏贵金. 酸碱气体对氯代芳烃削减的影响[J]. 环境化学, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015
引用本文: 刘莎, 黄学敏, 黄林艳, 孙丽芳, 黎烈武, 刘烨煊, 苏贵金. 酸碱气体对氯代芳烃削减的影响[J]. 环境化学, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015
LIU Sha, HUANG Xuemin, HUANG Linyan, SUN Lifang, LI Liewu, LIU Yexuan, SU Guijin. Influence of acid and basic gases on the reduction of chlorinated aromatics[J]. Environmental Chemistry, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015
Citation: LIU Sha, HUANG Xuemin, HUANG Linyan, SUN Lifang, LI Liewu, LIU Yexuan, SU Guijin. Influence of acid and basic gases on the reduction of chlorinated aromatics[J]. Environmental Chemistry, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015

酸碱气体对氯代芳烃削减的影响

  • 基金项目:

    中国科学院知识创新工程重要方向项目(KZCX2-YW-QN407);国家高技术研究发展计划(863)项目(2012AA062803);国家重点基础研究发展计划(973)项目(2009CB421606);国家自然科学基金项目(21177141,51078346)资助.

Influence of acid and basic gases on the reduction of chlorinated aromatics

  • Fund Project:
  • 摘要: 氯代芳烃多属于一种高毒性、难降解的持久性有机污染物,对环境和人类健康具有极大的危害.因此,削减其在环境的排放至关重要.在垃圾焚烧、化石燃料燃烧、铁矿石烧结等工业过程中,除存在氯代芳烃污染物外,还常伴有酸性气体二氧化硫、氮氧化物、氯化氢和碱性气体氨气的存在.这些气体物质的共存对氯代芳烃的削减具有重要的影响.本文综述了二氧化硫、氮氧化物、氯化氢和氨气等气体物质对氯代芳烃污染物在热催化过程和光降解过程中的降解、生成及阻滞的影响作用,阐述了其影响氯代芳烃削减和生成的机理,然后对研究过程中获得的成果和存在的问题进行了总结,并对气体污染物和氯代芳烃协同去除技术的研究方向进行了展望.
  • 加载中
  • [1] 余刚, 牛军峰, 黄俊,等. 持久性有机污染物: 新的全球性环境问题[M]. 科学出版社, 2005:165-216
    [2] Wania F, Mackay D. The evolution of mass balance models of persistent organic pollutant fate in the environment[J]. Environmental Pollution, 1999, 100(1): 223-240
    [3] Bailey R E, Van Wijk D, Thomas P C. Sources and prevalence of pentachlorobenzene in the environment[J]. Chemosphere, 2009, 75(5): 555-564
    [4] AD Dayan, Rodamilans M, Gomez J, et al. Hexachlorobenzene: Proceedings of an International Symposium[J].Journal of Clinical Pathology, 1988, 41: 119-120
    [5] Ballschmiter K, Niemczyk R, Sch Fer W, et al. Isomer-specific identification of polychlorinated benzenes (PCBz) and-biphenyls (PCB) in effluents of municipal waste incineration[J]. Fresenius' Zeitschrift Für Analytische Chemie, 1987, 328(7): 583-587
    [6] Bailey R E. Global hexachlorobenzene emissions[J]. Chemosphere, 2001, 43(2): 167-182
    [7] Blumenstock M, Zimmermann R, Schramm K, et al. Influence of combustion conditions on the PCDD/F-, PCB-, PCBz-and PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant[J]. Chemosphere, 2000, 40(9): 987-993
    [8] Imagawa T, Lee C W. Correlation of polychlorinated naphthalenes with polychlorinated dibenzofurans formed from waste incineration[J]. Chemosphere, 2001, 44(6): 1511-1520
    [9] He Y, Sun T, Ou Z, et al. Fate of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil-rice paddy system[J]. Chemosphere, 1996, 32(7): 1381-1389
    [10] Zhang J, Zhao W, Pan J, et al. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area[J]. Environment International, 2005, 31(6): 855-860
    [11] Howe T S, Billings S, Stolzberg R J. Sources of polycyclic aromatic hydrocarbons and Hexachlorobenzene in Spruce Needles of Eastern Alaska[J]. Environmental Science & Technology, 2004, 38(12): 3294-3298
    [12] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892
    [13] Wang S, Hao J. Air quality management in China: Issues, challenges, and options[J]. Journal of Environmental Sciences(China), 2012, 24(1): 2-13
    [14] Finlayson B J, Pitts J N. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles[J]. Science, 1997, 276(5315): 1045-1051
    [15] Akimoto H. Global air quality and pollution[J]. Science, 2003, 302(5651): 1716-1719
    [16] Zhao C, Wang Y, Zeng T. East China plains: a "basin" of ozone pollution[J]. Environmental Science & Technology, 2009, 43(6): 1911-1915
    [17] Shan W, Yin Y, Lu H, et al. A meteorological analysis of ozone episodes using HYSPLIT model and surface data[J]. Atmospheric Research, 2009, 93(4): 767-776
    [18] Waibel A, Peter T, Carslaw K, et al. Arctic ozone loss due to denitrification[J]. Science, 1999, 283(5410): 2064-2069
    [19] Zhou Y, Brunner D, Hueglin C, et al. Changes in OMI tropospheric NO2columns over Europe from 2004 to 2009 and the influence of meteorological variability[J]. Atmospheric Environment, 2012, 46:482-495
    [20] Xu Z, Deng S, Yang Y, et al. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst[J]. Chemosphere, 2012, 87(9): 1032-1038
    [21] Zhu Z, Liu Z, Niu H, et al. Mechanism of SO2 Promotion for NO Reduction with NH3 over Activated Carbon-Supported Vanadium Oxide Catalyst[J]. Journal of Catalysis, 2001, 197(1): 6-16
    [22] Bai S, Zhao J, Wang L, et al. SO2promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catalysis Today, 2010, 158(3/4): 393-400
    [23] Shao K, Yan J H, Li X D, et al. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere, 2010, 78(10): 1230-1235
    [24] Wang R, Li J. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures[J]. Environmental Science & Technology, 2010, 44(11): 4282-4287
    [25] Zhang L F, Anderson W A. Effect of ozone and sulfur dioxide on the photolytic degradation of chlorobenzene in air[J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3315-3319
    [26] Ryan S P, Altwicker E R. Understanding the role of iron chlorides in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans[J]. Environmental Science & Technology, 2004, 38(6): 1708-1717
    [27] Hajizadeh Y, Onwudili J A, Williams P T. Effects of gaseous NH3 and SO2on the concentration profiles of PCDD/Fs in flyash under post-Combustion zone conditions[J]. Waste Management, 2012, 32(7): 1378-1386
    [28] Lee C W, Kilgroe J D, Raghunathan K. Effect of soot and copper combustor deposits on dioxin emissions[J]. Environmental Engineering Science, 1998, 15(1): 71-84
    [29] Stieglitz L, Vogg H, Zwick G, et al. On formation conditions of organohalogen compounds from particulate carbon of fly ash[J]. Chemosphere, 1991, 23(8): 1255-1264
    [30] Pekarek V, Punčoch Ř M, Bureš M, et al. Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/Fs and PCBs under model laboratory conditions[J]. Chemosphere, 2007, 66(10): 1947-1954
    [31] Gullett B K, Bruce K R, Beach L O. Effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal waste combustors[J]. Environmental Science & Technology, 1992, 26(10): 1938-1943
    [32] Tuppurainen K, Halonen I, Ruokoj Rvi P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere, 1998, 36(7): 1493-1511
    [33] Bertinchamps F, Treinen M, Blangenois N, et al. Positive effect of NOx on the performances of VOx/TiO2 based catalysts in the total oxidation abatement of chlorobenzene[J]. Journal of Catalysis, 2005, 230(2): 493-498
    [34] Ide Y, Kashiwabara K, Okada S, et al. Catalytic decomposition of dioxin from MSW incinerator flue gas[J]. Chemosphere, 1996, 32(1): 189-198
    [35] Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2 at low temperatures[J]. Catalysis Today, 2002, 73(3): 239-247
    [36] Mars P, Van Krevelen D W. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 1954, 3:41-59
    [37] Koebel M, Madia G, Raimondi F, et al. Enhanced Reoxidation of Vanadia by NO2in the Fast SCR Reaction[J]. Journal of Catalysis, 2002, 209(1): 159-165
    [38] Yan M, Qi Z F, Li X D, et al. Chlorobenzene Formation from Fly Ash: Effect of moisture, chlorine gas, cupric chloride, urea, ammonia, and ammonium sulfate[J]. Environmental Engineering Science, 2012, 29(9): 890-896
    [39] Takacs L, Moilanen G L. Simultaneous control of PCDD/PCDF, HCl and NOx emissions from municipal solid waste incinerators with ammonia injection[J]. Journal of the Air & Waste Management Association, 1991, 41(5): 716-722
    [40] Ruokojärvi P H, Halonen I A, Tuppurainen K A, et al. Effect of gaseous inhibitors on PCDD/Fs formation[J]. Environmental Science & Technology, 1998, 32(20): 3099-3103
    [41] Addink R, Paulus R H, Olie K. Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash using nitrogen and sulfur compounds[J]. Environmental Science & Technology, 1996, 30(7): 2350-2354
    [42] Gandhe A R, Rebello J S, Figueiredo J, et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Applied Catalysis B: Environmental, 2007, 72(1): 129-135
    [43] Albonetti S, Blasioli S, Bonelli R, et al. The role of acidity in the decomposition of 1, 2-dichlorobenzene over TiO2 based V2O5/WO3catalysts[J]. Applied Catalysis A: General, 2008, 341(1): 18-25
    [44] Marie-Rose S, Belin T, Mijoin J, et al. Destruction of PAH and dioxin precursors using selective oxidation over zeolite catalysts. Influence of the presence of ammonia in the flue gas[J]. Applied Catalysis B: Environmental, 2009, 93(1): 106-111
    [45] Suzuki K, Kasai E, Aono T, et al. De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed[J]. Chemosphere, 2004, 54(1): 97-104
    [46] Schuler D, Jager J. Formation of chlorinated and brominated dioxins and other organohalogen compounds at the pilot incineration plant VERONA[J]. Chemosphere, 2004, 54(1): 49-59
    [47] Takasuga T, Umetsu N, Makino T, et al. Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper[J]. Archives of Environmental Contamination and Toxicology, 2007, 53(1): 8-21
    [48] Stoll M, Furrer J, Seifert H, et al. Effects of flue gas composition on the catalytic destruction of chlorinated aromatic compounds with a V-oxide catalyst[J]. Waste Management, 2001, 21(5): 457-463
  • 加载中
计量
  • 文章访问数:  912
  • HTML全文浏览数:  912
  • PDF下载数:  546
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-08-24
刘莎, 黄学敏, 黄林艳, 孙丽芳, 黎烈武, 刘烨煊, 苏贵金. 酸碱气体对氯代芳烃削减的影响[J]. 环境化学, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015
引用本文: 刘莎, 黄学敏, 黄林艳, 孙丽芳, 黎烈武, 刘烨煊, 苏贵金. 酸碱气体对氯代芳烃削减的影响[J]. 环境化学, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015
LIU Sha, HUANG Xuemin, HUANG Linyan, SUN Lifang, LI Liewu, LIU Yexuan, SU Guijin. Influence of acid and basic gases on the reduction of chlorinated aromatics[J]. Environmental Chemistry, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015
Citation: LIU Sha, HUANG Xuemin, HUANG Linyan, SUN Lifang, LI Liewu, LIU Yexuan, SU Guijin. Influence of acid and basic gases on the reduction of chlorinated aromatics[J]. Environmental Chemistry, 2014, 33(5): 731-738. doi: 10.7524/j.issn.0254-6108.2014.05.015

酸碱气体对氯代芳烃削减的影响

  • 1.  西安建筑科技大学环境与市政工程学院, 西北水资源与环境生态教育部重点实验室, 西安, 710055;
  • 2.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085;
  • 3.  国家知识产权局专利复审委员会, 北京, 100088
基金项目:

中国科学院知识创新工程重要方向项目(KZCX2-YW-QN407);国家高技术研究发展计划(863)项目(2012AA062803);国家重点基础研究发展计划(973)项目(2009CB421606);国家自然科学基金项目(21177141,51078346)资助.

摘要: 氯代芳烃多属于一种高毒性、难降解的持久性有机污染物,对环境和人类健康具有极大的危害.因此,削减其在环境的排放至关重要.在垃圾焚烧、化石燃料燃烧、铁矿石烧结等工业过程中,除存在氯代芳烃污染物外,还常伴有酸性气体二氧化硫、氮氧化物、氯化氢和碱性气体氨气的存在.这些气体物质的共存对氯代芳烃的削减具有重要的影响.本文综述了二氧化硫、氮氧化物、氯化氢和氨气等气体物质对氯代芳烃污染物在热催化过程和光降解过程中的降解、生成及阻滞的影响作用,阐述了其影响氯代芳烃削减和生成的机理,然后对研究过程中获得的成果和存在的问题进行了总结,并对气体污染物和氯代芳烃协同去除技术的研究方向进行了展望.

English Abstract

参考文献 (48)

返回顶部

目录

/

返回文章
返回