[1]
|
余刚, 牛军峰, 黄俊,等. 持久性有机污染物: 新的全球性环境问题[M]. 科学出版社, 2005:165-216
|
[2]
|
Wania F, Mackay D. The evolution of mass balance models of persistent organic pollutant fate in the environment[J]. Environmental Pollution, 1999, 100(1): 223-240
|
[3]
|
Bailey R E, Van Wijk D, Thomas P C. Sources and prevalence of pentachlorobenzene in the environment[J]. Chemosphere, 2009, 75(5): 555-564
|
[4]
|
AD Dayan, Rodamilans M, Gomez J, et al. Hexachlorobenzene: Proceedings of an International Symposium[J].Journal of Clinical Pathology, 1988, 41: 119-120
|
[5]
|
Ballschmiter K, Niemczyk R, Sch Fer W, et al. Isomer-specific identification of polychlorinated benzenes (PCBz) and-biphenyls (PCB) in effluents of municipal waste incineration[J]. Fresenius' Zeitschrift Für Analytische Chemie, 1987, 328(7): 583-587
|
[6]
|
Bailey R E. Global hexachlorobenzene emissions[J]. Chemosphere, 2001, 43(2): 167-182
|
[7]
|
Blumenstock M, Zimmermann R, Schramm K, et al. Influence of combustion conditions on the PCDD/F-, PCB-, PCBz-and PAH-concentrations in the post-combustion chamber of a waste incineration pilot plant[J]. Chemosphere, 2000, 40(9): 987-993
|
[8]
|
Imagawa T, Lee C W. Correlation of polychlorinated naphthalenes with polychlorinated dibenzofurans formed from waste incineration[J]. Chemosphere, 2001, 44(6): 1511-1520
|
[9]
|
He Y, Sun T, Ou Z, et al. Fate of 1,2,4-trichlorobenzene (1,2,4-TCB) in soil-rice paddy system[J]. Chemosphere, 1996, 32(7): 1381-1389
|
[10]
|
Zhang J, Zhao W, Pan J, et al. Tissue-dependent distribution and accumulation of chlorobenzenes by vegetables in urban area[J]. Environment International, 2005, 31(6): 855-860
|
[11]
|
Howe T S, Billings S, Stolzberg R J. Sources of polycyclic aromatic hydrocarbons and Hexachlorobenzene in Spruce Needles of Eastern Alaska[J]. Environmental Science & Technology, 2004, 38(12): 3294-3298
|
[12]
|
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892
|
[13]
|
Wang S, Hao J. Air quality management in China: Issues, challenges, and options[J]. Journal of Environmental Sciences(China), 2012, 24(1): 2-13
|
[14]
|
Finlayson B J, Pitts J N. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles[J]. Science, 1997, 276(5315): 1045-1051
|
[15]
|
Akimoto H. Global air quality and pollution[J]. Science, 2003, 302(5651): 1716-1719
|
[16]
|
Zhao C, Wang Y, Zeng T. East China plains: a "basin" of ozone pollution[J]. Environmental Science & Technology, 2009, 43(6): 1911-1915
|
[17]
|
Shan W, Yin Y, Lu H, et al. A meteorological analysis of ozone episodes using HYSPLIT model and surface data[J]. Atmospheric Research, 2009, 93(4): 767-776
|
[18]
|
Waibel A, Peter T, Carslaw K, et al. Arctic ozone loss due to denitrification[J]. Science, 1999, 283(5410): 2064-2069
|
[19]
|
Zhou Y, Brunner D, Hueglin C, et al. Changes in OMI tropospheric NO2columns over Europe from 2004 to 2009 and the influence of meteorological variability[J]. Atmospheric Environment, 2012, 46:482-495
|
[20]
|
Xu Z, Deng S, Yang Y, et al. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst[J]. Chemosphere, 2012, 87(9): 1032-1038
|
[21]
|
Zhu Z, Liu Z, Niu H, et al. Mechanism of SO2 Promotion for NO Reduction with NH3 over Activated Carbon-Supported Vanadium Oxide Catalyst[J]. Journal of Catalysis, 2001, 197(1): 6-16
|
[22]
|
Bai S, Zhao J, Wang L, et al. SO2promoted reduction of NO with NH3 over vanadium molecularly anchored on the surface of carbon nanotubes[J]. Catalysis Today, 2010, 158(3/4): 393-400
|
[23]
|
Shao K, Yan J H, Li X D, et al. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere, 2010, 78(10): 1230-1235
|
[24]
|
Wang R, Li J. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures[J]. Environmental Science & Technology, 2010, 44(11): 4282-4287
|
[25]
|
Zhang L F, Anderson W A. Effect of ozone and sulfur dioxide on the photolytic degradation of chlorobenzene in air[J]. Industrial & Engineering Chemistry Research, 2013, 52(9): 3315-3319
|
[26]
|
Ryan S P, Altwicker E R. Understanding the role of iron chlorides in the de novo synthesis of polychlorinated dibenzo-p-dioxins/dibenzofurans[J]. Environmental Science & Technology, 2004, 38(6): 1708-1717
|
[27]
|
Hajizadeh Y, Onwudili J A, Williams P T. Effects of gaseous NH3 and SO2on the concentration profiles of PCDD/Fs in flyash under post-Combustion zone conditions[J]. Waste Management, 2012, 32(7): 1378-1386
|
[28]
|
Lee C W, Kilgroe J D, Raghunathan K. Effect of soot and copper combustor deposits on dioxin emissions[J]. Environmental Engineering Science, 1998, 15(1): 71-84
|
[29]
|
Stieglitz L, Vogg H, Zwick G, et al. On formation conditions of organohalogen compounds from particulate carbon of fly ash[J]. Chemosphere, 1991, 23(8): 1255-1264
|
[30]
|
Pekarek V, Punčoch Ř M, Bureš M, et al. Effects of sulfur dioxide, hydrogen peroxide and sulfuric acid on the de novo synthesis of PCDD/Fs and PCBs under model laboratory conditions[J]. Chemosphere, 2007, 66(10): 1947-1954
|
[31]
|
Gullett B K, Bruce K R, Beach L O. Effect of sulfur dioxide on the formation mechanism of polychlorinated dibenzodioxin and dibenzofuran in municipal waste combustors[J]. Environmental Science & Technology, 1992, 26(10): 1938-1943
|
[32]
|
Tuppurainen K, Halonen I, Ruokoj Rvi P, et al. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere, 1998, 36(7): 1493-1511
|
[33]
|
Bertinchamps F, Treinen M, Blangenois N, et al. Positive effect of NOx on the performances of VOx/TiO2 based catalysts in the total oxidation abatement of chlorobenzene[J]. Journal of Catalysis, 2005, 230(2): 493-498
|
[34]
|
Ide Y, Kashiwabara K, Okada S, et al. Catalytic decomposition of dioxin from MSW incinerator flue gas[J]. Chemosphere, 1996, 32(1): 189-198
|
[35]
|
Koebel M, Madia G, Elsener M. Selective catalytic reduction of NO and NO2 at low temperatures[J]. Catalysis Today, 2002, 73(3): 239-247
|
[36]
|
Mars P, Van Krevelen D W. Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 1954, 3:41-59
|
[37]
|
Koebel M, Madia G, Raimondi F, et al. Enhanced Reoxidation of Vanadia by NO2in the Fast SCR Reaction[J]. Journal of Catalysis, 2002, 209(1): 159-165
|
[38]
|
Yan M, Qi Z F, Li X D, et al. Chlorobenzene Formation from Fly Ash: Effect of moisture, chlorine gas, cupric chloride, urea, ammonia, and ammonium sulfate[J]. Environmental Engineering Science, 2012, 29(9): 890-896
|
[39]
|
Takacs L, Moilanen G L. Simultaneous control of PCDD/PCDF, HCl and NOx emissions from municipal solid waste incinerators with ammonia injection[J]. Journal of the Air & Waste Management Association, 1991, 41(5): 716-722
|
[40]
|
Ruokojärvi P H, Halonen I A, Tuppurainen K A, et al. Effect of gaseous inhibitors on PCDD/Fs formation[J]. Environmental Science & Technology, 1998, 32(20): 3099-3103
|
[41]
|
Addink R, Paulus R H, Olie K. Prevention of polychlorinated dibenzo-p-dioxins/dibenzofurans formation on municipal waste incinerator fly ash using nitrogen and sulfur compounds[J]. Environmental Science & Technology, 1996, 30(7): 2350-2354
|
[42]
|
Gandhe A R, Rebello J S, Figueiredo J, et al. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate[J]. Applied Catalysis B: Environmental, 2007, 72(1): 129-135
|
[43]
|
Albonetti S, Blasioli S, Bonelli R, et al. The role of acidity in the decomposition of 1, 2-dichlorobenzene over TiO2 based V2O5/WO3catalysts[J]. Applied Catalysis A: General, 2008, 341(1): 18-25
|
[44]
|
Marie-Rose S, Belin T, Mijoin J, et al. Destruction of PAH and dioxin precursors using selective oxidation over zeolite catalysts. Influence of the presence of ammonia in the flue gas[J]. Applied Catalysis B: Environmental, 2009, 93(1): 106-111
|
[45]
|
Suzuki K, Kasai E, Aono T, et al. De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed[J]. Chemosphere, 2004, 54(1): 97-104
|
[46]
|
Schuler D, Jager J. Formation of chlorinated and brominated dioxins and other organohalogen compounds at the pilot incineration plant VERONA[J]. Chemosphere, 2004, 54(1): 49-59
|
[47]
|
Takasuga T, Umetsu N, Makino T, et al. Role of temperature and hydrochloric acid on the formation of chlorinated hydrocarbons and polycyclic aromatic hydrocarbons during combustion of paraffin powder, polymers, and newspaper[J]. Archives of Environmental Contamination and Toxicology, 2007, 53(1): 8-21
|
[48]
|
Stoll M, Furrer J, Seifert H, et al. Effects of flue gas composition on the catalytic destruction of chlorinated aromatic compounds with a V-oxide catalyst[J]. Waste Management, 2001, 21(5): 457-463
|