无锡冬季和春季大气中细粒子化学组分及其特性分析

杨起超, 曾立民, 唐静玥, 魏永杰, 王莉华, 董华斌, 许涛, 过伟, 东梅, 龚伟达. 无锡冬季和春季大气中细粒子化学组分及其特性分析[J]. 环境化学, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002
引用本文: 杨起超, 曾立民, 唐静玥, 魏永杰, 王莉华, 董华斌, 许涛, 过伟, 东梅, 龚伟达. 无锡冬季和春季大气中细粒子化学组分及其特性分析[J]. 环境化学, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002
YANG Qichao, ZENG Limin, TANG Jingyue, WEI Yongjie, WANG Lihua, DONG Huabin, XU Tao, GUO Wei, DONG Mei, GONG Weida. Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns[J]. Environmental Chemistry, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002
Citation: YANG Qichao, ZENG Limin, TANG Jingyue, WEI Yongjie, WANG Lihua, DONG Huabin, XU Tao, GUO Wei, DONG Mei, GONG Weida. Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns[J]. Environmental Chemistry, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002

无锡冬季和春季大气中细粒子化学组分及其特性分析

  • 基金项目:

    国家高技术研究发展计划(863)项目(2006AA06A301)、环境保护部大气细颗粒物化学成分在线监测设备研制与应用示范(2013YQ060569)、环境保护部环保公益性行业科研专项项目(201009002)资助.

Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns

  • Fund Project:
  • 摘要: 本研究对无锡冬(2011年1月)春(2011年5月)两季PM2.5、PM10颗粒物浓度进行了传统的膜采样及离线检测分析,并运用大气气体/气溶胶水溶性离子在线收集及分析(GAC-IC)系统对PM2.5颗粒物中水溶性无机离子(WSⅡ)进行了在线检测,时间分辨率为30 min.无锡冬、春两季PM2.5的浓度分别为108.15±41.76 μg·m-3 和84.40±26.74 μg·m-3,其PM2.5/PM10比值分别为0.81±0.07和0.78±0.07,有较强的二次气溶胶生成过程.铵可用性指数(J冬季=101.2%±22.3%,J春季=79.5%±20.2%)分析表明冬季无锡大气颗粒物中铵(NH4+)相对比较富余,而春季则出现铵(NH4+)亏损现象,春季光化学反应更为活跃,硫氧化率(SOR)由冬季的0.15±0.05增至春季的0.35±0.13,硫酸盐(SO42-)浓度增加明显,导致铵(NH4+)相对不足.硫氧化率(SOR)没有明显的季节变化,冬、春两季均为0.15.细粒子中的WSⅡ与气态污染物、气象因子、硫氧化率(SOR)和氮氧化率(NOR)等的主成分分析表明无锡大气光化学反应与污染物的其他来源,例如工业源、交通移动源、生物质燃烧源等,有很好的协同作用,共同推高了大气中颗粒物的浓度.观测期间同时测得冬季PM2.5颗粒中有机碳(OC)与元素碳(EC)浓度之间有较好的相关性(R2=0.839),两者有一个共同的主导源,而春季来源则比较复杂,两者相关性较差;二次有机碳(SOC)的半定量分析表明春季大气中有机气溶胶的形成有较强的二次转化过程.
  • 加载中
  • [1] 唐孝炎, 张远航, 邵敏. 大气环境化学(第二版)[M]. 北京:高等教育出版社, 2006:268-351
    [2] Huang C, Chen C H, Li L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2011, 11:4105-4120
    [3] Fu X, Wang S X, Zhao B, et al. Emission inventory of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta region, China[J]. Atmospheric Environment, 2013, 70: 39-50
    [4] Han B, Bi X H, Xue Y H, et al. Source apportionment of ambient PM10 in urban areas of Wuxi, China[J]. Frontiers of Environmental Science & Engineering in China, 2011, 5(4):552-563
    [5] 罗志明. 大气气态污染物和气溶胶连续收集装置的研制和应用[D]. 北京:北京大学, 2006:49-54
    [6] Dong H B, Zeng L M, Hu M, et al. Technical Note: The application of an improved gas and aerosol collector for ambient air pollutants in China[J]. Atmospheric Chemistry and Physics, 2012, 12: 10519-10533
    [7] 顾建伟, 张远航, 曾立民, 等. 气态污染物和气溶胶在线检测装置(GAC)测量结果评估[J]. 环境科学研究, 2009, 22(1):16-22
    [8]
    [9] Zhang T, Cao J J, Tie X X, et al. Water-soluble ions in atmospheric aerosols measured in Xi'an, China: Seasonal variations and sources[J]. Atmospheric Research, 2011, 102: 110-119
    [10] Pathak R K, Wu W S, Wang T. Summertime PM2.5 ionic species in four major cities of China: Nitrate formation in an ammonia-deficient atmosphere[J]. Atmospheric Chemistry and Physics, 2009, 9: 1711-1722
    [11]
    [12] Rengarajan R, Sudheer A K, Sarin M M. Wintertime PM2.5 and PM10 carbonaceous and inorganic constituents from urban site in western India[J]. Atmospheric Research, 2011, 102: 420-431
    [13] Adams P J, Seinfeld J H. Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model[J]. Journal of Geophysical Research, 1999, 104 (D11): 13791-13823
    [14] Chu S H. PM2.5 episodes as observed in the speciation trends network[J]. Atmospheric Environment, 2004, 38: 5237-5246
    [15] Colbeck I, Harrison R M. Ozone-secondary aerosol-visibility relationships in north-west England[J]. Science of the Total Environment, 1984, 34: 87-100
    [16] Ohta S, Okita T. A chemical characterization of atmospheric aerosol in Sapporo[J]. Atmospheric Environment, Part A, 1990, 24: 815-833
    [17] Kaneyasu N, Yoshikado H, Mizuno T, et al. Chemical forms and sources of extremely high nitrate and chloride in winter aerosol pollution in the Kanto Plain of Japan[J]. Atmospheric Environment, 1999, 33: 1745-1756
    [18] Cai Y I, Cheng M T. Characterization of chemical species in atmospheric aerosols in a metropolitan basin[J]. Chemosphere, 2004, 54: 1171-1181
    [19] Han Y M, Du P X, Cao J J, et al. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China[J]. Science of the Total Environment, 2006, 355: 176-186
    [20] Duan F K, He K B, Ma Y L, et al. Concentration and chemical characteristics of PM2.5 in Beijing, China: 2001—2002[J]. Science of the Total Environment, 2006, 355: 264-275
    [21] Yang H, Yu J Z, Ho S S H, et al. The chemical composition of inorganic and carbonaceous materials in PM2.5 in Najing, China[J]. Atmospheric Environment, 2005, 39: 3735-3749
    [22] Ho K F, Lee S C, Chan C K, et al. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong[J]. Atmospheric Environment, 2003, 37: 31-39
    [23] Lee H S, Kang B W. Chemical characterization of principal PM2.5 species in Chongju, South Korea[J]. Atmospheric Environment, 2001, 35: 739-746
    [24] Takahashi K, Minoura H, Sakamoto K. Chemical composition of atmospheric aerosols in the general environment and around a trunk road in the Tokyo metropolitan area[J]. Atmospheric Environment, 2008, 42:113-125
    [25] Novakov T, Penner J E. Large contribution of organic aerosols to cloud-condensation-nuclei concentrations[J]. Nature, 1993, 365: 823-826
    [26] Andreae M O, Merlet P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955-966
    [27] Ram K, Sarin M M, Hegde P. Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: Sources and temporal variability[J]. Atmospheric Environment, 2008, 42: 6785-6796
    [28] Sandradewi J, Prévǒt A S H, Weingartner E, et al. A study of wood burning and traffic aerolsols in an Alpine valley using a multi-wavelength Aethalometer[J]. Atmospheric Environment, 2008, 42: 101-112
    [29] Sudheer A K, Sarin M M. Carbonaceous aerosols in MABL of Bay of Bengal: Influence of continental outflow[J]. Atmospheric Environment, 2008, 42: 4089-4100
    [30] Mayol-Bracero O L, Gabriel R, Andreae M O, et al. Carbonaceous aerosols over the India Ocean during the Indian Ocean Experimental (INDOEX): Chemical characterization, optical properties, and probable sources[J]. Journal of Geophysical Research, 2002, 107(D19): 29-1-29-21
    [31] Chow J C, Watson J G, Lu Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079-2112
    [32] Castro L M, Pio C A, Harrison Roy M, et al. Carbonaceous aerosols in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations[J]. Atmospheric Environment, 1999, 33: 3771-2781
  • 加载中
计量
  • 文章访问数:  1341
  • HTML全文浏览数:  1341
  • PDF下载数:  1309
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-09-09
杨起超, 曾立民, 唐静玥, 魏永杰, 王莉华, 董华斌, 许涛, 过伟, 东梅, 龚伟达. 无锡冬季和春季大气中细粒子化学组分及其特性分析[J]. 环境化学, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002
引用本文: 杨起超, 曾立民, 唐静玥, 魏永杰, 王莉华, 董华斌, 许涛, 过伟, 东梅, 龚伟达. 无锡冬季和春季大气中细粒子化学组分及其特性分析[J]. 环境化学, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002
YANG Qichao, ZENG Limin, TANG Jingyue, WEI Yongjie, WANG Lihua, DONG Huabin, XU Tao, GUO Wei, DONG Mei, GONG Weida. Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns[J]. Environmental Chemistry, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002
Citation: YANG Qichao, ZENG Limin, TANG Jingyue, WEI Yongjie, WANG Lihua, DONG Huabin, XU Tao, GUO Wei, DONG Mei, GONG Weida. Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns[J]. Environmental Chemistry, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002

无锡冬季和春季大气中细粒子化学组分及其特性分析

  • 1.  北京大学环境科学与工程学院环境模拟与污染控制国家联合重点实验室, 北京, 100871;
  • 2.  北京市环境保护监测中心, 北京, 100048;
  • 3.  无锡市环境保护局, 无锡, 214025;
  • 4.  江阴市环境监测站, 无锡, 214400
基金项目:

国家高技术研究发展计划(863)项目(2006AA06A301)、环境保护部大气细颗粒物化学成分在线监测设备研制与应用示范(2013YQ060569)、环境保护部环保公益性行业科研专项项目(201009002)资助.

摘要: 本研究对无锡冬(2011年1月)春(2011年5月)两季PM2.5、PM10颗粒物浓度进行了传统的膜采样及离线检测分析,并运用大气气体/气溶胶水溶性离子在线收集及分析(GAC-IC)系统对PM2.5颗粒物中水溶性无机离子(WSⅡ)进行了在线检测,时间分辨率为30 min.无锡冬、春两季PM2.5的浓度分别为108.15±41.76 μg·m-3 和84.40±26.74 μg·m-3,其PM2.5/PM10比值分别为0.81±0.07和0.78±0.07,有较强的二次气溶胶生成过程.铵可用性指数(J冬季=101.2%±22.3%,J春季=79.5%±20.2%)分析表明冬季无锡大气颗粒物中铵(NH4+)相对比较富余,而春季则出现铵(NH4+)亏损现象,春季光化学反应更为活跃,硫氧化率(SOR)由冬季的0.15±0.05增至春季的0.35±0.13,硫酸盐(SO42-)浓度增加明显,导致铵(NH4+)相对不足.硫氧化率(SOR)没有明显的季节变化,冬、春两季均为0.15.细粒子中的WSⅡ与气态污染物、气象因子、硫氧化率(SOR)和氮氧化率(NOR)等的主成分分析表明无锡大气光化学反应与污染物的其他来源,例如工业源、交通移动源、生物质燃烧源等,有很好的协同作用,共同推高了大气中颗粒物的浓度.观测期间同时测得冬季PM2.5颗粒中有机碳(OC)与元素碳(EC)浓度之间有较好的相关性(R2=0.839),两者有一个共同的主导源,而春季来源则比较复杂,两者相关性较差;二次有机碳(SOC)的半定量分析表明春季大气中有机气溶胶的形成有较强的二次转化过程.

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回