多溴联苯醚和全氟烷基酸的分子毒理机制研究

任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
引用本文: 任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
REN Xiaomin, ZHANG Lianying, GUO Lianghong. Molecular mechanism study on the toxicological effects of polybrominated diphenyl ethers and perfluoroalkyl acids[J]. Environmental Chemistry, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
Citation: REN Xiaomin, ZHANG Lianying, GUO Lianghong. Molecular mechanism study on the toxicological effects of polybrominated diphenyl ethers and perfluoroalkyl acids[J]. Environmental Chemistry, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012

多溴联苯醚和全氟烷基酸的分子毒理机制研究

Molecular mechanism study on the toxicological effects of polybrominated diphenyl ethers and perfluoroalkyl acids

  • 摘要: 多溴联苯醚(PBDEs)和全氟烷基酸(PFAAs)是两类使用量大、环境污染广泛、人体暴露严重的新型有机污染物,2009年已纳入《斯德哥尔摩公约》持久性有机污染物 (POPs) 名单,但其毒性效应及作用机制并不明确.本文综述了本课题组近几年针对多溴联苯醚PBDEs和全氟烷基酸PFAAs的分子毒理机制研究工作,主要集中在这两类污染物对甲状腺系统、雌激素系统和肝脏脂肪酸代谢系统干扰效应的分子机制研究.本文分别从分子、细胞和活体三个层面,研究了污染物与核受体的直接结合作用、结合后受体的构象变化、细胞内受体的转录活性、以及活体暴露后受体调控基因的表达变化,由此阐明了污染物通过与受体直接作用导致细胞和活体生物功能改变的分子机制.同时结合计算模拟,探讨了污染物生物效应与其化学结构之间的关系,发现污染物的受体活性取决于它们与受体结合的空间构型,而其活性强度基本与二者的结合能力一致,主要受疏水作用和氢键的影响.此外,还通过研究污染物与天然配体转运蛋白的相互作用,明确了各个污染物与转运蛋白的结合能力,探讨了其构效关系,并评估了污染物对天然配体在体内转运过程的潜在干扰效应.通过上述研究工作,提出了多层面、多靶点研究环境污染物分子毒理机制的新思路,建立和引进了研究污染物与生物靶分子相互作用的新方法,发现了PBDEs、PFAAs与TR、ER、PPARγ核受体结合的新模式,为深入了解这些污染物的分子毒理机制提供了有用的信息和有效的研究手段.
  • 加载中
  • [1] 刘汉霞,张庆华,江桂斌,等.多溴联苯醚及其环境问题[J].化学进展,2005,17(3): 554-562
    [2] Hites RA. Polybrominated diphenyl ethers in the environment and in people: A meta-analysis of concentrations[J].Environmental Science Technology, 2004, 38(4): 945-956
    [3] Athanasiadou M, Cuadra SN, Marsh G, et al. Polybrominated diphenyl ethers (PBDEs) and bioaccumulative hydroxylated PBDE metabolites in young humans from Managua, Nicaragua[J].Environmental Health Perspectives, 2008, 116(2): 400-408
    [4] Zota AR, Park JS, Wang Y, et al. Polybrominated diphenyl ethers, hydroxylated polybrominated diphenyl ethers, and measures of thyroid function in second trimester pregnant women in California[J].Environmental Science Technology, 2011, 45(18):7896-7905
    [5] 史亚利,潘媛媛,王杰明,等. 全氟化合物的环境问题[J].化学进展,2009,21: 369-376
    [6] Olsen G W, Burris J M, Burlew M M, et al. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations[J].Journal of Occupational and Environmental Medicine, 2003, 45: 260-270
    [7] Olsen G W, Burris J M, Ehresman D J, et al. Half-life of serum elimination of perfluorooctanesulfonate,perfluorohexanesulfonate, and perfluorooctanoate in retired fluorochemical production workers[J].Environmental Health Perspectives, 2007, 115: 1298-1305
    [8] Legler J. New insights into the endocrine disrupting effects of brominated flame retardants[J].Chemosphere, 2008, 73(2):216-222
    [9] Dingemans M M, van den Berg M, Westerink R H. Neurotoxicity of brominated flame retardants: (in)direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system[J].Environmental Health Perspectives, 2011, 119(7): 900-907
    [10] McDonald T A. A perspective on the potential health risks of PBDEs[J].Chemosphere, 2002, 46(5): 745-755
    [11] 张义峰,赵丽霞,单国强,等.全氟化合物同分异构体的环境行为及毒性效应研究进展[J].生态毒理学报,2012,7: 464-476
    [12] 方雪梅,王建设,戴家银.全氟类有机污染物的污染状况及其生态毒理研究进展[J].地球科学进展,2010,25: 543-551
    [13] 韦荣国,张银凤,秦占芬.全氟化合物发育神经毒性研究进展[J].生态毒理学报,2012,7: 483-490
    [14] Aagaard MM, Siersbaek R, Mandrup S. Molecular basis for gene-specific transactivation by nuclear receptors[J].Biochimica Et Biophysica Acta-Molecular Basis of Disease, 2011, 1812(8): 824-835
    [15] Ren X M, Guo L H. Molecular toxicology of polybrominated diphenyl ethers: Nuclear hormone receptor mediated pathways[J].Environmental Science-Processes & Impacts, 2013, 15(4): 702-708
    [16] Lau C, Anitole K, Hodes C, et al. Perfluoroalkyl acids: A review of monitoring and toxicological findings[J].Toxicological Sciences, 2007, 99(2): 366-394
    [17] Zhang J S, Lazar M A. The mechanism of action of thyroid hormones[J].Annual Review of Physiology, 2000, 62: 439-466
    [18] Hamers T, Kamstra J H, Sonneveld E, et al. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,29,4,49-tetrabromodiphenyl ether (BDE-47)[J].Molecular Nutrition & Food Research, 2008, 52, 284-298
    [19] Marchesini G R, Meimaridou A, Haasnoot W, et al. Biosensor discovery of thyroxine transport disrupting chemicals[J].Toxicology and Applied Pharmacology, 2008, 232(1): 150-160
    [20] Kitamura S, Shinohara S, Iwase E, et al. Affinity for thyroid hormone and estrogen receptors of hydroxylated polybrominated diphenyl ethers[J].Journal of Health Science, 2008, 54(5): 607-614
    [21] Kojima H, Takeuchi S, Uramaru N, et al. Nuclear hormone receptor activity of polybrominated diphenyl ethers and their hydroxylated and methoxylated metabolites in transactivation assays using Chinese hamster ovary cells[J].Environmental Health Perspectives, 2009, 117(8): 1210-1218
    [22] Li F, Xie Q, Li X, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta: In vitro and in silico investigations[J].Environmental Health Perspectives, 2010, 118(5): 602-606
    [23] Ibhazehiebo K, Iwasaki T, Kimura-Kuroda J, et al. Disruption of thyroid hormone receptor-mediated transcription and thyroid hormone-induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers[J].Environmental Health Perspectives, 2011, 119(2): 168-175
    [24] Weiss J M, Andersson P L, Lamoree M H, et al. Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport protein transthyretin[J].Toxicological Sciences, 2009, 109(2): 206-216
    [25] Vongphachan V, Cassone C G, Wu D, et al. Effects of perfluoroalkyl compounds on mRNA expression levels of thyroid hormone-responsive genes in primary cultures of avian neuronal cells[J].Toxicological Sciences, 2011, 120(2): 392-402
    [26] Long M H, Ghisari M, Bonefeld-Jorgensen E C. Effects of perfluoroalkyl acids on the function of the thyroid hormone and the aryl hydrocarbon receptor[J].Environmental Science and Pollution Research, 2013, 20(11): 8045-8056
    [27] Cheng Y, Cui Y, Chen H M, et al. Thyroid disruption effects of environmental level perfluorooctane sulfonates (PFOS) in Xenopus laevis[J].Ecotoxicology, 2011, 20(8): 2069-2078
    [28] Cao J, Lin Y, Guo L H, et al. Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins[J].Toxicology, 2010, 277(1/3): 20-28
    [29] Ren X M, Guo L H. Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe[J].Environmental Science Technology, 2012, 46(8): 4633-4640
    [30] Ren X M, Guo L H, Gao Y, et al. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination[J].Toxicology and Applied Pharmacology, 2013, 268(3): 256-263
    [31] Ren X M, Zhang Y F, Guo L H, et al. Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor[J].Archives of Toxicology, 2014, DOI: 10.1007/s00204-014-1258-y
    [32] Heldring N, Pike A, Andersson S, et al. Estrogen receptors: How do they signal and what are their targets[J].Physiological Reviews, 2007, 87(3): 905-931
    [33] Meerts I A, Letcher R J, Hoving S, et al. In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds[J].Environmental Health Perspectives, 2001, 109(4): 399-407
    [34] Hamers T, Kamstra J H, Sonneveld E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants[J].Toxicological Sciences, 2006, 92(1): 157-173
    [35] Yang W H, Wang Z Y, Liu H L, et al. Exploring the binding features of polybrominated diphenyl ethers as estrogen receptor antagonists: Docking studies[J].Sar and Qsar in Environmental Research, 2010, 21(3/4): 351-367
    [36] Benninghoff A D, Bisson W H, Koch D C, et al., Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro[J].Toxicological Sciences, 2011, 120(1): 42-58
    [37] Li X, Gao Y, Guo LH, et al., Structure-dependent activities of hydroxylated polybrominated diphenyl ethers on human estrogen receptor[J].Toxicology, 2013, 309: 15-22
    [38] Gao Y, Li X, Guo LH. Assessment of estrogenic activity of perfluoroalkyl acids based on ligand-induced conformation state of human estrogen receptor[J].Environmental Science Technology, 2013, 47(1): 634-641
    [39] Bloom M S, Kannan K, Spliethoff H M, et al. Exploratory assessment of perfluorinated compounds and human thyroid function[J].Physiology & Behavior, 2010, 99(2): 240-245
    [40] Luebker D J, Hansen K J, Bass N M, et al. Interactions of flurochemicals with rat liver fatty acidbinding protein[J].Toxicology, 2002, 176: 175-185
    [41] Zhang L, Ren XM, Guo LH. Structure-based investigation on the interaction of perfluorinated compounds with human liver fatty acid binding protein[J].Environmental science technology, 2013, 47 (19): 11293-11301
    [42] Zhang L, Ren X M, Wan B, et al. Structuredependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor γ[J].Toxicology and Applied Pharmacology, 2014,279(3):275-283
  • 加载中
计量
  • 文章访问数:  1917
  • HTML全文浏览数:  1917
  • PDF下载数:  838
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-05-26
任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
引用本文: 任肖敏, 张连营, 郭良宏. 多溴联苯醚和全氟烷基酸的分子毒理机制研究[J]. 环境化学, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
REN Xiaomin, ZHANG Lianying, GUO Lianghong. Molecular mechanism study on the toxicological effects of polybrominated diphenyl ethers and perfluoroalkyl acids[J]. Environmental Chemistry, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012
Citation: REN Xiaomin, ZHANG Lianying, GUO Lianghong. Molecular mechanism study on the toxicological effects of polybrominated diphenyl ethers and perfluoroalkyl acids[J]. Environmental Chemistry, 2014, 33(10): 1662-1671. doi: 10.7524/j.issn.0254-6108.2014.10.012

多溴联苯醚和全氟烷基酸的分子毒理机制研究

  • 1. 中国科学院生态环境研究中心, 北京, 100085

摘要: 多溴联苯醚(PBDEs)和全氟烷基酸(PFAAs)是两类使用量大、环境污染广泛、人体暴露严重的新型有机污染物,2009年已纳入《斯德哥尔摩公约》持久性有机污染物 (POPs) 名单,但其毒性效应及作用机制并不明确.本文综述了本课题组近几年针对多溴联苯醚PBDEs和全氟烷基酸PFAAs的分子毒理机制研究工作,主要集中在这两类污染物对甲状腺系统、雌激素系统和肝脏脂肪酸代谢系统干扰效应的分子机制研究.本文分别从分子、细胞和活体三个层面,研究了污染物与核受体的直接结合作用、结合后受体的构象变化、细胞内受体的转录活性、以及活体暴露后受体调控基因的表达变化,由此阐明了污染物通过与受体直接作用导致细胞和活体生物功能改变的分子机制.同时结合计算模拟,探讨了污染物生物效应与其化学结构之间的关系,发现污染物的受体活性取决于它们与受体结合的空间构型,而其活性强度基本与二者的结合能力一致,主要受疏水作用和氢键的影响.此外,还通过研究污染物与天然配体转运蛋白的相互作用,明确了各个污染物与转运蛋白的结合能力,探讨了其构效关系,并评估了污染物对天然配体在体内转运过程的潜在干扰效应.通过上述研究工作,提出了多层面、多靶点研究环境污染物分子毒理机制的新思路,建立和引进了研究污染物与生物靶分子相互作用的新方法,发现了PBDEs、PFAAs与TR、ER、PPARγ核受体结合的新模式,为深入了解这些污染物的分子毒理机制提供了有用的信息和有效的研究手段.

English Abstract

参考文献 (42)

返回顶部

目录

/

返回文章
返回