致癌性卤代醌介导的脂质氢过氧化物分解的分子机制

刘庆林, 覃浩, 黄春华, 刘蒲, 朱本占. 致癌性卤代醌介导的脂质氢过氧化物分解的分子机制[J]. 环境化学, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016
引用本文: 刘庆林, 覃浩, 黄春华, 刘蒲, 朱本占. 致癌性卤代醌介导的脂质氢过氧化物分解的分子机制[J]. 环境化学, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016
LIU Qinglin, QIN Hao, HUANG Chunhua, LIU Pu, ZHU Benzhan. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide by the carcinogenic halogenated quinones[J]. Environmental Chemistry, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016
Citation: LIU Qinglin, QIN Hao, HUANG Chunhua, LIU Pu, ZHU Benzhan. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide by the carcinogenic halogenated quinones[J]. Environmental Chemistry, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016

致癌性卤代醌介导的脂质氢过氧化物分解的分子机制

  • 基金项目:

    中国科学院战略性先导科技专项(B类)(XDB01020300)

    国家自然科学基金(21237005, 21321004, 20925724)

    环境化学与生态毒理学国家重点实验室开放基金(KF2012-09)资助.

Molecular mechanism of metal-independent decomposition of lipid hydroperoxide by the carcinogenic halogenated quinones

  • Fund Project:
  • 摘要: 卤代醌是许多卤芳香持久有机污染物的致癌代谢产物和饮用水消毒副产物.13-过氧羟基-9,11-十八碳二烯酸(13-HPODE)是最为广泛研究的内源性脂质过氧化物.众所周知,过渡金属离子可以催化分解13-HPODE,但尚不清楚卤代醌是否可以通过不依赖金属离子的途径促进其分解;若是如此,又有什么特异性和相似性?我们发现卤化醌如2,5-二氯-1,4-苯醌(DCBQ)可显著促进13-HPODE的分解.综合采用电子自旋共振-自旋捕获、HPLC-MS和GC-MS等分析方法,可检测到反应形成的脂质烷基自由基如戊烷基自由基、7-羧甲基自由基以及具有基因毒性的4-羟基-2-壬烯醛(HNE)等.在DCBQ和13-HPODE的反应中也能检测到两种氯醌-脂质烷氧基耦合物.我们认为卤代醌促进内源性脂质过氧化物13-HPODE分解生成活性脂质烷基自由基和基因毒性的HNE是通过一类新型的金属非依赖亲核取代与裂解机理来实现的,这也在一定程度上解释了其潜在的基因毒性和致癌性.
  • 加载中
  • [1] Yin H, Xu L, Porter N A. Free radical lipid peroxidation: Mechanisms and analysis[J].Chem Rev, 2011,111: 5944-5972
    [2] Niki E. Lipid peroxidation: physiological levels and dual biological effects[J].Free Radic Biol Med, 2009, 47: 469-484
    [3] Halliwell B, Gutteridge J. Free Radicals in Biology and Medicine[M]. Oxford University Press, 2007
    [4] Blair I A. DNA adducts with lipid peroxidation products[J].J Biol Chem, 2008, 283: 15545-15549
    [5] Lee S H, Oe T, Blair I A. Vitamin C-induced decomposition of lipid hydroperoxides to endogenous genotoxins[J].Science, 2001, 292: 2083-2086
    [6] Qian S Y, Yue G H, Tomer K B, et al. Identification of all classes of spin-trapped carbon-centered radicals in soybean lipoxygenase-dependent lipid peroxidations of omega-6 polyunsaturated fatty acids via LC/ESR, LC/MS, and tandem MS[J].Free Radic Biol Med, 2003, 34: 1017-1028
    [7] Iwahashi H, Hirai T, Kumamoto K. High performance liquid chromatography/electron spin resonance/mass spectrometry analyses of radicals formed in an anaerobic reaction of 9- (or 13-) hydroperoxide octadecadienoic acids with ferrous ions[J].J Chromatogr A, 2006, 1132: 67-75
    [8] Spiteller P, Kern W, Reiner J, et al. Aldehydic lipid peroxidation products derived from linoleic acid[J].Biochimica. et. Biophysica. Acta. (BBA)-Mol. Cell Biol Lipids, 2001, 1531: 188-208
    [9] Schneider C, Porter N A, Brash A R. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation[J].J Biol Chem, 2008, 283: 15539-15543
    [10] Bolton J L, Trush M A, Penning T M, et al. Role of quinones in toxicology[J].Chem Res Toxicol, 2000, 13: 135-160
    [11] Song Y, Wagner B A, Witmer J R, et al. Nonenzymatic displacement of chlorine and formation of free radicals upon the reaction of glutathione with PCB quinones[J].Proc Natl Acad Sci USA, 2009, 106: 9725-9730
    [12] Zhu B Z, Shan G Q. Potential mechanism for pentachlorophenol-induced carcinogenicity: A novel mechanism for metal-independent production of hydroxyl radicals[J].Chem Res Toxicol, 2009, 22: 969-977
    [13] Meunier B. Chemistry. Catalytic degradation of chlorinated phenols[J].Science, 2002, 296: 270-271
    [14] Gupta S S, Stadler M, Noser C A, et al. Rapid total destruction of chlorophenols by activated hydrogen peroxide[J].Science, 2002, 296: 326-328
    [15] Sorokin A, Meunier B, Seris J L. Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine[J].Science, 1995, 268: 1163-1166
    [16] Zhao Y, Qin F, Boyd J M, et al. Characterization and determination of chloro- and bromo-benzoquinones as new chlorination disinfection byproducts in drinking water[J].Anal Chem, 2010, 82: 4599-4605
    [17] Qin F, Zhao Y Y, Zhao Y, et al. A toxic disinfection by-product, 2,6-dichloro-1,4-benzoquinone, identified in drinking water[J].Angew Chem Int Ed, 2010, 49: 790-792
    [18] Zhu B Z, Zhao H T, Kalyanaraman B, et al. Mechanism of metal-independent decomposition of organic hydroperoxides and formation of alkoxyl radicals by halogenated quinones[J].Proc Natl Acad Sci USA, 2007, 104: 3698-3702
    [19] Zhu B Z, Shan G Q, Huang C H, et al. Metal-independent decomposition of hydroperoxides by halogenated quinones: Detection and identification of a quinone ketoxy radical[J].Proc Natl Acad Sci USA, 2009, 106: 11466-11471
    [20] Zhu B Z, Zhao H T, Kalyanaraman B, et al. Metal-independent production of hydroxyl radicals by halogenated quinones and hydrogen peroxide: an ESR spin trapping study[J].Free Radic Biol Med, 2002, 32: 465-473
    [21] Zhu B Z, Kalyanaraman B, Jiang G B. Molecular mechanism for metal-independent production of hydroxyl radicals by hydrogen peroxide and halogenated quinones[J].Proc Natl Acad Sci USA, 2007, 104: 17575-17578
    [22] Zhu B Z, Zhu J G, Mao L, et al. Detoxifying carcinogenic polyhalogenated quinones by hydroxamic acids via an unusual double Lossen rearrangement mechanism[J].Proc Natl Acad Sci USA, 2010, 107: 20686-20690
    [23] Zhu B Z, Mao L, Huang C H, et al. Unprecedented hydroxyl radical-dependent two-step chemiluminescence production by polyhalogenated quinoid carcinogens and H2O2[J].Proc Natl Acad Sci USA, 2012, 109: 16046-16051
    [24] Qin H, Huang C H, Shan G Q, et al. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens[J].Free Radic Biol Med, 2013, 63: 459-466
    [25] Petersen D R, Doorn J A. Reactions of 4-hydroxynonenal with proteins and cellular targets[J].Free Radic Biol Med, 2004, 37: 937-945
    [26] Awasthi Y C, Sharma R, Sharma A, et al. Self-regulatory role of 4-hydroxynonenal in signaling for stress-induced programmed cell death[J].Free Radic Biol Med, 2008, 45: 111-118
  • 加载中
计量
  • 文章访问数:  2454
  • HTML全文浏览数:  2454
  • PDF下载数:  655
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-06-18
刘庆林, 覃浩, 黄春华, 刘蒲, 朱本占. 致癌性卤代醌介导的脂质氢过氧化物分解的分子机制[J]. 环境化学, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016
引用本文: 刘庆林, 覃浩, 黄春华, 刘蒲, 朱本占. 致癌性卤代醌介导的脂质氢过氧化物分解的分子机制[J]. 环境化学, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016
LIU Qinglin, QIN Hao, HUANG Chunhua, LIU Pu, ZHU Benzhan. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide by the carcinogenic halogenated quinones[J]. Environmental Chemistry, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016
Citation: LIU Qinglin, QIN Hao, HUANG Chunhua, LIU Pu, ZHU Benzhan. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide by the carcinogenic halogenated quinones[J]. Environmental Chemistry, 2014, 33(10): 1637-1644. doi: 10.7524/j.issn.0254-6108.2014.10.016

致癌性卤代醌介导的脂质氢过氧化物分解的分子机制

  • 1.  郑州大学化学与分子工程学院, 郑州, 450001;
  • 2.  中国科学院生态环境研究中心, 环境化学与生态毒理学国家重点实验室, 北京, 100085
基金项目:

中国科学院战略性先导科技专项(B类)(XDB01020300)

国家自然科学基金(21237005, 21321004, 20925724)

环境化学与生态毒理学国家重点实验室开放基金(KF2012-09)资助.

摘要: 卤代醌是许多卤芳香持久有机污染物的致癌代谢产物和饮用水消毒副产物.13-过氧羟基-9,11-十八碳二烯酸(13-HPODE)是最为广泛研究的内源性脂质过氧化物.众所周知,过渡金属离子可以催化分解13-HPODE,但尚不清楚卤代醌是否可以通过不依赖金属离子的途径促进其分解;若是如此,又有什么特异性和相似性?我们发现卤化醌如2,5-二氯-1,4-苯醌(DCBQ)可显著促进13-HPODE的分解.综合采用电子自旋共振-自旋捕获、HPLC-MS和GC-MS等分析方法,可检测到反应形成的脂质烷基自由基如戊烷基自由基、7-羧甲基自由基以及具有基因毒性的4-羟基-2-壬烯醛(HNE)等.在DCBQ和13-HPODE的反应中也能检测到两种氯醌-脂质烷氧基耦合物.我们认为卤代醌促进内源性脂质过氧化物13-HPODE分解生成活性脂质烷基自由基和基因毒性的HNE是通过一类新型的金属非依赖亲核取代与裂解机理来实现的,这也在一定程度上解释了其潜在的基因毒性和致癌性.

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回