重庆主城餐厨垃圾理化性质及产甲烷潜能分析

何琴, 李蕾, 何清明, 彭绪亚. 重庆主城餐厨垃圾理化性质及产甲烷潜能分析[J]. 环境化学, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011
引用本文: 何琴, 李蕾, 何清明, 彭绪亚. 重庆主城餐厨垃圾理化性质及产甲烷潜能分析[J]. 环境化学, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011
HE Qin, LI Lei, HE Qingming, PENG Xuya. Physical and chemical properties and methane production potential of food waste in Chongqing City[J]. Environmental Chemistry, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011
Citation: HE Qin, LI Lei, HE Qingming, PENG Xuya. Physical and chemical properties and methane production potential of food waste in Chongqing City[J]. Environmental Chemistry, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011

重庆主城餐厨垃圾理化性质及产甲烷潜能分析

  • 基金项目:

    国家"十一五"科技支撑计划项目(2010BAC67B01)

    重庆市科技计划重点项目资助.

Physical and chemical properties and methane production potential of food waste in Chongqing City

  • Fund Project:
  • 摘要: 以重庆市主城区的餐厨垃圾为研究对象,调查分析其组成成分及粒径、含水率、挥发性固体(VS)含量等理化性质,并通过半连续式单相厌氧消化试验,进一步研究餐厨垃圾在中温条件下37±2 ℃的产甲烷性能.结果表明,重庆市主城区餐厨垃圾的主要成分为食物残渣、厨余废物等易消化物质,并具有含水率、含油率和VS含量较高等特性;半连续式厌氧消化试验所得实际产甲烷潜能为0.363—0.713 L CH4·g-1 VS,占理论产甲烷潜能的45.77%—89.93%,稳定运行时VS去除率达到88.87%—93.85%.中温厌氧消化技术能有效地处理重庆市餐厨垃圾并同时从中高效地回收清洁能源沼气.
  • 加载中
  • [1] Kastner V, Somitsch W, Schnitzhofer W. The anaerobic fermentation of food waste: A comparison of two bioreactor systems[J]. Journal of Cleaner Production, 2012, 34:82-90
    [2] Bernstad A, la Cour Jansen J. A life cycle approach to the management of household food waste -A Swedish full-scale case study[J]. Waste Management, 2011, 31:1879-1896
    [3] Righi S, Oliviero L, Pedrini M, et al. Life Cycle Assessment of management systems for sewage sludge and food waste: centralized and decentralized approaches[J]. Journal of Cleaner Production, 2013, 44:8-17
    [4] Mata-Alvarez J. Biomethanization of the organic fraction of municipal solid waste[M]. London, UK: IWA Publishing, 2003:141-178
    [5] Gebrezgabhera S A, Meuwissen M P M, Prins B A M, et al. Economic analysis of anaerobic digestion-A case of Green power biogas plant in the Netherlands[J]. NJAS -Wageningen Journal of Life Sciences, 2010, 57(2):109-115
    [6] Cho J K, Park S C, Chang H N. Biochemical methane potential and solid state anaerobic digestion of Korean food wastes[J].Bioresource Technology, 1995, 52: 245-253
    [7] 李东,袁振宏,张宇,等.城市生活有机垃圾各组分的厌氧消化产甲烷能力[J].环境科学学报,2008,28(11):2284-2290
    [8] Li Y Q, Zhang R H, Liu X Y, et al. Evaluating methane production from anaerobic mono-and co-digestion of kitchen waste, corn stover, and chicken manure[J]. Energy Fuels, 2013, 27:2085-2091
    [9] Li Y Q, Zhang R H, Liu G Q, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates[J]. Bioresource Technology, 2013, 149: 565-569
    [10] APHA. Standard methods for the examination of water and wastewater[S]. Washington, DC: American Public Health Association, America Water Works Association, Water Environment Federation, 2005
    [11] 贾传兴,彭绪亚,刘国涛.有机垃圾两相厌氧消化氨氮累积模型的建立及验证[J].重庆大学学报,2011,34(1): 121-127
    [12] 李小建,冯文谦,曾彩明,等.油脂去除对餐厨垃圾压滤液厌氧消化的影响[J].环境化学,2012,31(4): 522-527
    [13] 赵蔚蔚,闫永强.沈阳市餐饮业餐厨垃圾性状及产生量的调查[J].环境卫生工程,2007,15(2): 10-14
    [14] 王攀,任连海,甘筱.城市餐厨垃圾产生现状调查及影响因素分析[J].环境科学与技术,2013,36(3): 181-185
    [15] 李亚红,王琦,蔡伟民.不同pH值条件下Fe3+、Cu2+和Zn2+对厨余垃圾两相厌氧消化水解酸化过程的影响[J].环境工程学报,2007,1(10): 116-119
    [16] Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review[J]. Bioresource Technology, 2008, 99(10): 4044-4064
    [17] Cabbai V, Ballico M, Aneggi E, et al. BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge[J]. Waste Management, 2013, 33: 1626-1632
    [18] Elbeshbishy E, Nakhla G, Hafez H. Biochemical methane potential (BMP) of food waste and primary sludge: Inuence of inoculum pre-incubation and inoculum source[J]. Bioresource Technology, 2010, 110: 18-25
    [19] Sliesa J A, Brekelmans J, Martín M A, et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion[J]. Bioresource Technology, 2010, 101(23): 9040-9048
    [20] Cavaleiro A J, Ferreira T, Pereira F, et al. Biochemical methane potential of raw and pre-treated meat-processing wastes[J]. Bioresource Technology, 2013, 129: 519-525
    [21] Symons G E, Buswell A M. The methane fermentation of carbohydrates[J]. Journal of the American Chemical Society, 1933,55: 2028-2036
    [22] Raposo F, Fernández-Cegrí V, De la Rubia M A, et al. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study[J]. Journal of Chemical Technology and Biotechnology, 2011, 86: 1088-1098
    [23] Heo N H, Park S C, Kang H. Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge[J]. Journal of Environmental Science and Health, 2004, A39 (7): 1739-1756
    [24] 李荣平,葛亚军,王奎升,等.餐厨垃圾特性及其厌氧消化性能研究[J].可再生能源,2010,28(1): 76-80
    [25] Murphy J D, McKeogh E. Technical, economic and environmental analysis of energy production from municipal solid waste[J]. Renewable Energy, 2004, 29: 1043-1057
    [26] Zhang L, Jahng D. Long-term anaerobic digestion of food waste stabilized by trace elements[J]. Waste Management, 2012, 32: 1509-1515
    [27] Dai X H, Duan N N, Dong B, et al. High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance[J]. Waste Management, 2013, 33: 308-316
    [28] Nagao N, Tajima N, Kawai M, et al. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste[J]. Bioresource Technology, 2012, 118: 210-218
  • 加载中
计量
  • 文章访问数:  1578
  • HTML全文浏览数:  1514
  • PDF下载数:  890
  • 施引文献:  0
出版历程
  • 收稿日期:  2014-03-06
何琴, 李蕾, 何清明, 彭绪亚. 重庆主城餐厨垃圾理化性质及产甲烷潜能分析[J]. 环境化学, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011
引用本文: 何琴, 李蕾, 何清明, 彭绪亚. 重庆主城餐厨垃圾理化性质及产甲烷潜能分析[J]. 环境化学, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011
HE Qin, LI Lei, HE Qingming, PENG Xuya. Physical and chemical properties and methane production potential of food waste in Chongqing City[J]. Environmental Chemistry, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011
Citation: HE Qin, LI Lei, HE Qingming, PENG Xuya. Physical and chemical properties and methane production potential of food waste in Chongqing City[J]. Environmental Chemistry, 2014, 33(12): 2191-2197. doi: 10.7524/j.issn.0254-6108.2014.12.011

重庆主城餐厨垃圾理化性质及产甲烷潜能分析

  • 1. 重庆大学 三峡库区生态环境教育部重点实验室, 重庆, 400045
基金项目:

国家"十一五"科技支撑计划项目(2010BAC67B01)

重庆市科技计划重点项目资助.

摘要: 以重庆市主城区的餐厨垃圾为研究对象,调查分析其组成成分及粒径、含水率、挥发性固体(VS)含量等理化性质,并通过半连续式单相厌氧消化试验,进一步研究餐厨垃圾在中温条件下37±2 ℃的产甲烷性能.结果表明,重庆市主城区餐厨垃圾的主要成分为食物残渣、厨余废物等易消化物质,并具有含水率、含油率和VS含量较高等特性;半连续式厌氧消化试验所得实际产甲烷潜能为0.363—0.713 L CH4·g-1 VS,占理论产甲烷潜能的45.77%—89.93%,稳定运行时VS去除率达到88.87%—93.85%.中温厌氧消化技术能有效地处理重庆市餐厨垃圾并同时从中高效地回收清洁能源沼气.

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回