基于DNA模板的核酸适体-金属纳米簇在环境检测中的研究进展

宋丹, 徐文娟, 王宏亮, 刘佳瑶, 韩向峙, 龙峰. 基于DNA模板的核酸适体-金属纳米簇在环境检测中的研究进展[J]. 环境化学, 2021, 40(8): 2320-2331. doi: 10.7524/j.issn.0254-6108.2021021803
引用本文: 宋丹, 徐文娟, 王宏亮, 刘佳瑶, 韩向峙, 龙峰. 基于DNA模板的核酸适体-金属纳米簇在环境检测中的研究进展[J]. 环境化学, 2021, 40(8): 2320-2331. doi: 10.7524/j.issn.0254-6108.2021021803
SONG Dan, XU Wenjuan, WANG Hongliang, LIU Jiayao, HAN Xiangzhi, LONG Feng. Research progress of DNA-templated aptamer metal nanoclusters in environmental detection[J]. Environmental Chemistry, 2021, 40(8): 2320-2331. doi: 10.7524/j.issn.0254-6108.2021021803
Citation: SONG Dan, XU Wenjuan, WANG Hongliang, LIU Jiayao, HAN Xiangzhi, LONG Feng. Research progress of DNA-templated aptamer metal nanoclusters in environmental detection[J]. Environmental Chemistry, 2021, 40(8): 2320-2331. doi: 10.7524/j.issn.0254-6108.2021021803

基于DNA模板的核酸适体-金属纳米簇在环境检测中的研究进展

    通讯作者: Tel:13683124746,E-mail:longf04@ruc.edu.cn
  • 基金项目:
    中国人民大学2020年度拔尖创新人才培育资助计划成果和北京市自然科学基金-海淀原始创新联合基金(L182045)资助

Research progress of DNA-templated aptamer metal nanoclusters in environmental detection

    Corresponding author: LONG Feng, longf04@ruc.edu.cn
  • Fund Project: the Outstanding Innovative Talents Cultivation Funded Programs 2020 of Renmin University of China and Beijing Natural Science Fund-Haidian Original Innovation Joint Fund (L182045)
  • 摘要:

    由于优异的光学性能、良好的生物相容性、低毒性和精确可控性等优势,基于DNA模板的金属纳米簇在生物传感、生物成像和疾病治疗等领域获得了广泛的研究与应用。核酸适体作为特异性识别探针,将其与DNA模板的金属纳米簇相结合,可获得生化传感平台的新型荧光探针。本文介绍DNA模板金属纳米簇,简要概述了核酸适体-金属纳米簇的设计与合成,最后重点介绍其在环境检测方面的应用及发展前景。

  • 加载中
  • 图 1  以DNA为模板的核酸适体金属纳米簇的设计、合成与在环境检测中的应用

    Figure 1.  Design, synthesis and application in environmental detection of DNA-templated aptamer metal nanoclusters

    图 2  以DNA为模板的核酸适体金属纳米簇用于汞离子检测的原理示意图

    Figure 2.  Schematic illustration of DNA-tamplated aptamer metal nanoclusters for mercury detection

    图 3  以DNA为模板的核酸适体金属纳米簇用于农药检测的原理示意图

    Figure 3.  Schematic illustration of DNA-templated aptamer metal nanoclusters for pesticide detection

    图 4  发夹式DNA模板铜纳米簇用于MC-LR的免标记荧光检测原理示意图[88]

    Figure 4.  Schematic illustration of label-free fluorescent strategy for MC-LR detection based on hpDNA-templated CuNCs[88]

    表 1  不同DNA模板金属纳米簇的理化性质

    Table 1.  Physical and chemical properties of different DNA-templated metal nanoclusters

    金属纳米簇
    Metal nanoclusters
    原子数量
    Number of atoms
    尺寸/nm
    Linear range
    量子产率
    Quantum yield
    发射波长/nm
    Emission wavelength
    参考文献
    Reference
    DNA-AuNCs21>5725[24]
    3 1.9%475[25]
    <9<2 2.2 %400—500[27]
    DNA-AgNCs2-68%—61%536-—644[32]
    1.5 573[38]
    2.4 640[39]
    DNA-Cu NCs1—2 598[44]
    3—5 6.1%610[47]
    DNA-Cu/AgNCs2 Ag—1 Cu51.2%573[52]
    2.0 ± 0.2568[54]
    DNA-Au/Ag NCs2 Au— 1 Ag4.5%630[55]
    DNA-Ag/Pt NCs2.11 610[56]
    金属纳米簇
    Metal nanoclusters
    原子数量
    Number of atoms
    尺寸/nm
    Linear range
    量子产率
    Quantum yield
    发射波长/nm
    Emission wavelength
    参考文献
    Reference
    DNA-AuNCs21>5725[24]
    3 1.9%475[25]
    <9<2 2.2 %400—500[27]
    DNA-AgNCs2-68%—61%536-—644[32]
    1.5 573[38]
    2.4 640[39]
    DNA-Cu NCs1—2 598[44]
    3—5 6.1%610[47]
    DNA-Cu/AgNCs2 Ag—1 Cu51.2%573[52]
    2.0 ± 0.2568[54]
    DNA-Au/Ag NCs2 Au— 1 Ag4.5%630[55]
    DNA-Ag/Pt NCs2.11 610[56]
    下载: 导出CSV

    表 2  部分微囊藻毒素-LR检测方法的性能对比

    Table 2.  Performance comparison of some microcystin-LR detection methods

    检测方法
    Detection method
    检测限
    Limit of detection
    线性范围
    Linear range
    检测时间
    Detection time
    参考文献
    Reference
    荧光适体传感器0.003 ng·L−10.005—1200 μg·L−110 min[88]
    电化学发光适体传感器0.0036 ng·L−19.95 pg·L−1—99.5 μg·L−160 min[89]
    电化学适体传感器1.99 ng·L−14.97 ng·L−1—2.9 μg·L−1120 min[90]
    比色适体传感器0.36 μg·L−10.5 μg·L−1—7.46 mg·L−130 min[91]
    SERS适体传感器0.002 μg·L−10.01—200 μg·L−1135 min[92]
    荧光适体传感器0.137 μg·L−10.4 μg·L−1—1.2 mg·L−175 min[93]
    电化学免疫传感器0.3 ng·L−110 ng·L−1—10 mg·L−160 min[94]
    电化学免疫传感器0.004 μg·L−10.005—50 μg·L−1120 min[95]
    电化学免疫传感器0.017 μg·L−10.5—5000 μg·L−110 min[96]
    ELISA0.6 ng·L−10.001—3.2 μg·L−174 min[97]
    LC-MS0.8 μg·L−12.5—2000 μg·L−115 min[98]
    检测方法
    Detection method
    检测限
    Limit of detection
    线性范围
    Linear range
    检测时间
    Detection time
    参考文献
    Reference
    荧光适体传感器0.003 ng·L−10.005—1200 μg·L−110 min[88]
    电化学发光适体传感器0.0036 ng·L−19.95 pg·L−1—99.5 μg·L−160 min[89]
    电化学适体传感器1.99 ng·L−14.97 ng·L−1—2.9 μg·L−1120 min[90]
    比色适体传感器0.36 μg·L−10.5 μg·L−1—7.46 mg·L−130 min[91]
    SERS适体传感器0.002 μg·L−10.01—200 μg·L−1135 min[92]
    荧光适体传感器0.137 μg·L−10.4 μg·L−1—1.2 mg·L−175 min[93]
    电化学免疫传感器0.3 ng·L−110 ng·L−1—10 mg·L−160 min[94]
    电化学免疫传感器0.004 μg·L−10.005—50 μg·L−1120 min[95]
    电化学免疫传感器0.017 μg·L−10.5—5000 μg·L−110 min[96]
    ELISA0.6 ng·L−10.001—3.2 μg·L−174 min[97]
    LC-MS0.8 μg·L−12.5—2000 μg·L−115 min[98]
    下载: 导出CSV
  • [1] 王建宇, 李丽, 王蕴平, 等. 在线固相萃取-超高效液相色谱法检测水中15种多环芳烃类污染物 [J]. 环境化学, 2018, 37(12): 2832-2836.

    WANG J Y, LI L, WANG Y P, et al. 15 kinds of polycyclic aromatic hydrocarbons in water were detected by solid phase extraction and ultra-high performance liquid chromatography [J]. Environmental Chemistry, 2018, 37(12): 2832-2836(in Chinese).

    [2] MUTER O, BARTKEVICS V. Advanced analytical techniques based on high resolution mass spectrometry for the detection of micropollutants and their toxicity in aquatic environments [J]. Current Opinion in Environmental Science & Health, 2020, 18: 1-6.
    [3] TUNÇELI A, ULAŞ A, ACAR O, et al. Solid phase extraction of cadmium and lead from water by amberlyst 15 and determination by flame atomic absorption spectrometry [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(2): 297-302. doi: 10.1007/s00128-018-2498-y
    [4] QI X, WANG S, LI T, et al. An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning [J]. Biosensors and Bioelectronics, 2021, 173: 112822. doi: 10.1016/j.bios.2020.112822
    [5] EJEIAN F, ETEDALI P, MANSOURI-TEHRANI H A, et al. Biosensors for wastewater monitoring: A review [J]. Biosensors and Bioelectronics, 2018, 118: 66-79.
    [6] 宋丹, 杨荣, 罗强, 等. 核酸适体及其在环境检测中的应用 [J]. 环境污染与防治, 2018, 40(6): 717-722, 727.

    SONG D, YANG R, LUO Q, et al. Aptamers and their applications in environmental detection [J]. Environmental Pollution and Control, 2018, 40(6): 717-722, 727(in Chinese).

    [7] NGUYEN V T, KWON Y S, GU M B. Aptamer-based environmental biosensors for small molecule contaminants [J]. Current Opinion in Biotechnology, 2017, 45: 15-23. doi: 10.1016/j.copbio.2016.11.020
    [8] 穆晋, 杨巾栏, 张大伟, 等. 荧光金属纳米团簇的制备及其在环境污染物检测中的应用研究进展 [J]. 分析化学, 2021, 49(3): 319-329. doi: 10.1016/S1872-2040(21)60082-8

    MU J, YANG J L, ZHANG D W, et al. Progress in preparation of metal nanoclusters and their application in detection of environmental pollutants [J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 319-329(in Chinese). doi: 10.1016/S1872-2040(21)60082-8

    [9] SHANG L, XU J, NIENHAUS G U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis [J]. Nano Today, 2019, 28: 100767. doi: 10.1016/j.nantod.2019.100767
    [10] QIAO Z J, ZHANG J, HAI X, et al. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics [J]. Biosensors and Bioelectronics, 2021, 176: 112898.
    [11] XU J, ZHU X, ZHOU X, et al. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters [J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115786.
    [12] GUO Y H, PAN X Y, ZHANG W Y,, et al. Label-free probes using DNA-templated silver nanoclusters as versatile reporters [J]. Biosensors and Bioelectronics, 2020, 150: 111926.
    [13] 贺锦灿, 李攻科, 胡玉玲. 基于DNA模板制备的金属纳米簇及其在分析检测中应用进展 [J]. 分析科学学报, 2018, 34(1): 127-133.

    HE J C, LI G K, HU Y L. Application of DNA-templated metal nano-clusters on analysis and detection [J]. Journal of Analytical Science, 2018, 34(1): 127-133(in Chinese).

    [14] XU J N, WEI C Y. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation [J]. Biosensors and Bioelectronics, 2017, 87: 422-427.
    [15] ZHU J B, ZHANG L B, TENG Y, et al. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging [J]. Nanoscale, 2015, 7(31): 13224-13229. doi: 10.1039/C5NR03092G
    [16] ZHANG B Z, WEI C Y. An aptasensor for the label-free detection of thrombin based on turn-on fluorescent DNA-templated Cu/Ag nanoclusters [J]. RSC Advances, 2020, 10(58): 35374-35380. doi: 10.1039/D0RA04609D
    [17] SONG C X, XU J Y, CHEN Y, et al. DNA-templated fluorescent nanoclusters for metal ions detection [J]. Molecules, 2019, 24: 4189. doi: 10.3390/molecules24224189
    [18] GUO Y H, AMUNYELA H T N N, CHENG Y L, et al. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications [J]. Food Chemistry, 2021, 335: 127657.
    [19] OU G Z, ZHAO J, CHEN P, et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions [J]. Analytical and Bioanalytical Chemistry, 2018, 410(10): 2485-2498. doi: 10.1007/s00216-017-0808-6
    [20] CHEN Y X, PHIPPS M L, WERNER J H, et al. DNA templated metal nanoclusters: From emergent properties to unique applications [J]. Accounts of Chemical Research, 2018, 51(11): 2756-2763. doi: 10.1021/acs.accounts.8b00366
    [21] WANG B J, ZHAO M, MEHDI M, et al. Biomolecule-assisted synthesis and functionality of metal nanoclusters for biological sensing: A review [J]. Materials Chemistry Frontiers, 2019, 3(9): 1722-1735. doi: 10.1039/C9QM00165D
    [22] PANDYA A, LAD A N, SINGH S P, et al. DNA assembled metal nanoclusters: Synthesis to novel applications [J]. RSC Advances, 2016, 6(114): 113095-113114. doi: 10.1039/C6RA24098D
    [23] KENNEDY T A, MACLEAN J L, LIU J. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH [J]. Chemical Communications, 2012, 48: 6845-6847. doi: 10.1039/c2cc32841k
    [24] LIU G Y, SHAO Y, MA K, et al. Synthesis of DNA-templated fluorescent gold nanoclusters [J]. Gold Bulletin, 2012, 45(2): 69-74. doi: 10.1007/s13404-012-0049-6
    [25] WANG H B, BAI H Y, DONG G L, et al. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: A sensitive fluorescent biosensing platform for DNA detection [J]. Nanoscale Advances, 2019, 1(4): 1482-1488. doi: 10.1039/C8NA00278A
    [26] WANG Y Y, HU L H, LI L L, et al. Fluorescent gold nanoclusters: Promising fluorescent probes for sensors and bioimaging [J]. Journal of Analysis and Testing, 2017, 1(2): 1-19.
    [27] LI Z Y, WU Y T, TSENG W L. UV-light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: Application to ratiometric fluorescent sensing of nucleic acids [J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23708-23716.
    [28] PETTY J T, ZHENG J, HUD N V, et al. DNA-templated Ag nanocluster formation [J]. Journal of the American Chemical Society, 2004, 126(16): 5207-5212. doi: 10.1021/ja031931o
    [29] GWINN E G, O'NEILL P, GUERRERO A J, et al. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters [J]. Advanced Materials, 2008, 20(2): 279-283. doi: 10.1002/adma.200702380
    [30] RICHARDS C I, CHOI S, HSIANG J C, et al. Oligonucleotide-stabilized Ag nanocluster fluorophores [J]. Journal of the American Chemical Society, 2008, 130(15): 5038-5039. doi: 10.1021/ja8005644
    [31] SHARMA J, YEH H C, YOO H, et al. A complementary palette of fluorescent silver nanoclusters [J]. Chemical Communications (Cambridge, England), 2010, 46(19): 3280-3282. doi: 10.1039/b927268b
    [32] LAN G Y, CHEN W Y, CHANG H T. Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence [J]. RSC Advances, 2011, 1(5): 802. doi: 10.1039/c1ra00181g
    [33] YU J, CHOI S, DICKSON R. Shuttle-based fluorogenic silver-cluster biolabels [J]. Angewandte Chemie, 2009, 121(2): 324-326. doi: 10.1002/ange.200804137
    [34] LI J J, ZHONG X Q, ZHANG H Q, et al. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes [J]. Analytical Chemistry, 2012, 84(12): 5170-5174. doi: 10.1021/ac3006268
    [35] YEH H C, SHARMA J, HAN J J, et al. A DNA−Silver nanocluster probe that fluoresces upon hybridization [J]. Nano Letters, 2010, 10(8): 3106-3110. doi: 10.1021/nl101773c
    [36] YIN J J, HE X X, WANG K M, et al. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization [J]. Analytical Chemistry, 2013, 85(24): 12011-12019. doi: 10.1021/ac402989u
    [37] GUO W W, YUAN J P, WANG E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion [J]. Chemical Communications (Cambridge, England), 2009(23): 3395-3397. doi: 10.1039/b821518a
    [38] CHEN J Y, JI X H, TINNEFELD P, et al. Multifunctional dumbbell-shaped DNA-templated selective formation of fluorescent silver nanoclusters or copper nanoparticles for sensitive detection of biomolecules [J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1786-1794.
    [39] LI C, WEI C. DNA-functionlized silver nanoclusters as label-free fluorescent probe for the highly sensitive detection of biothiols and acetylcholinesterase activity [J]. Sensors and Actuators B: Chemical,, 2017, 240: 451-458.
    [40] ROTARU A, DUTTA S, JENTZSCH E, et al. Selective dsDNA-templated formation of copper nanoparticles in solution [J]. Angewandte Chemie (International Ed. in English), 2010, 49(33): 5665-5667. doi: 10.1002/anie.200907256
    [41] QING Z, HE X, HE D, et al. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles [J]. Angewandte Chemie International Edition, 2013, 52(37): 9901-9904.
    [42] LIU G Y, SHAO Y, PENG J, et al. Highly thymine-dependent formation of fluorescent copper nanoparticles templated by ss-DNA [J]. Nanotechnology, 2013, 24(34): 345502. doi: 10.1088/0957-4484/24/34/345502
    [43] QING T, QING Z, MAO Z, et al. dsDNA-templated fluorescent copper nanoparticles: Poly (AT-TA)-dependent formation [J]. RSC Advances, 2014, 4(105): 61092-61095. doi: 10.1039/C4RA11551A
    [44] ZHU H W, DAI W X, YU X D, et al. Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing [J]. Talanta, 2015, 144: 642-647. doi: 10.1016/j.talanta.2015.07.022
    [45] OU L J, LI X Y, LIU H W, et al. Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free detection of Pb2+ ion [J]. Analytical Sciences, 2014, 30(7): 723-727. doi: 10.2116/analsci.30.723
    [46] HU Y H, WU Y M, CHEN T T, et al. Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols [J]. Analytical Methods, 2013, 5(14): 3577-3581. doi: 10.1039/c3ay40088c
    [47] WANG H B, LI Y, BAI H Y, et al. Fluorescent determination of dopamine using polythymine-templated copper nanoclusters [J]. Analytical Letters, 2018, 51(18): 2868-2877. doi: 10.1080/00032719.2018.1454457
    [48] 李婷, 曹忠, 李盼盼, 等. 聚胸腺嘧啶单链DNA-CuNCs荧光增强法用于汞离子的高灵敏检测 [J]. 高等学校化学学报, 2016, 37(9): 1616-1621.

    LI T, CAO Z, LI P P, et al. High-sensitive fluorescent enhancement detection of Hg(II) ions based on poly(thymine)-templated copper nanoclusters [J]. Chemical Journal of Chinese Universities, 2016, 37(9): 1616-1621(in Chinese).

    [49] LAN G Y, HUANG C C, CHANG H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions [J]. Chemical Communications (Cambridge, England), 2010, 46(8): 1257-1259. doi: 10.1039/b920783j
    [50] SU Y T, LAN G Y, CHEN W Y, et al. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid [J]. Analytical Chemistry, 2010, 82(20): 8566-8572. doi: 10.1021/ac101659d
    [51] AHN J K, KIM H Y, BAEK S, et al. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters [J]. Biosensors and Bioelectronics, 2017, 93: 330-334.
    [52] LAN G Y, CHEN W Y, CHANG H T. Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters [J]. The Analyst, 2011, 136(18): 3623-3628. doi: 10.1039/c1an15258k
    [53] LI R D, WANG Q, YIN B C, et al. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy [J]. Biosensors and Bioelectronics, 2016, 77: 995-1000.
    [54] DING Y J, LI X M, CHEN C, et al. A rapid evaluation of acute hydrogen sulfide poisoning in blood based on DNA-Cu/Ag nanocluster fluorescence probe [J]. Scientific Reports, 2017, 7(1): 9638. doi: 10.1038/s41598-017-09960-1
    [55] CHEN W Y, LAN G Y, CHANG H T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions [J]. Analytical Chemistry, 2011, 83(24): 9450-9455. doi: 10.1021/ac202162u
    [56] ZHENG C, ZHENG A X, LIU B, et al. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin [J]. Chemical Communications, 2014, 50: 13103-13106.
    [57] TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249(4968): 505-510. doi: 10.1126/science.2200121
    [58] ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346(6287): 818-822. doi: 10.1038/346818a0
    [59] KONG H Y, JONGHOE B. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science [J]. Biomolecules & Therapeutics, 2013, 21(6): 423-434.
    [60] YUE F L, LI F L, KONG Q Q, et al. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications [J]. Science of The Total Environment, 2021, 762: 143129. doi: 10.1016/j.scitotenv.2020.143129
    [61] LI F Q, YU Z G, HAN X D, et al. Electrochemical aptamer-based sensors for food and water analysis: A review [J]. Analytica Chimica Acta, 2019, 1051: 1-23. doi: 10.1016/j.aca.2018.10.058
    [62] YANG Y B, YANG X D, YANG Y J, et al. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules [J]. Carbon, 2018, 129: 380-395. doi: 10.1016/j.carbon.2017.12.013
    [63] LI H H, AHMAD W, RONG Y W, et al. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food [J]. Food Control, 2020, 107: 106761. doi: 10.1016/j.foodcont.2019.106761
    [64] LIU F, DING A L, ZHENG J S, et al. A label-free aptasensor for ochratoxin a detection based on the structure switch of aptamer [J]. Sensors, 2018, 18(6): 1769. doi: 10.3390/s18061769
    [65] SOLHIA E, HASANZADEHA M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay [J]. Biomedicine & Pharmacotherapy, 2020, 132: 110849.
    [66] FANG B Y, AN J, LIU B, et al. Hybridization induced fluorescence enhanced DNA-Ag nanocluster/aptamer probe for detection of prostate-specific antigen [J]. Colloids and Surfaces. B, Biointerfaces, 2019, 175: 358-364. doi: 10.1016/j.colsurfb.2018.12.013
    [67] ZHANG Z H, GUO C P, ZHANG S, et al. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor [J]. Biosensors and Bioelectronics, 2017, 89(Pt 2): 735-742.
    [68] LI J J, YOU J, ZHUANG Y P, et al. A “light-up” and “spectrum-shift” response of aptamer-functionalized silver nanoclusters for intracellular mRNA imaging [J]. Chemical Communications, 2014, 50(54): 7107-7110. doi: 10.1039/c4cc00160e
    [69] DING Y J, LI X M, GUO Y D, et al. Estimation of postmortem interval by vitreous potassium evaluation with a novel fluorescence aptasensor [J]. Scientific Reports, 2017, 7(1): 1868. doi: 10.1038/s41598-017-02027-1
    [70] WANG L, WANG M K, SHI F P, et al. Aptamer based fluorescence biosensor for protein kinase activity detection and inhibitor screening [J]. Sensors and Actuators B: Chemical, 2017, 252: 209-214.
    [71] LEE S T, BEAUMONT D, SU X D, et al. Formulation of DNA chimera templates: Effects on emission behavior of silver nanoclusters and sensing [J]. Analytica Chimica Acta, 2018, 1010: 62-68. doi: 10.1016/j.aca.2018.01.012
    [72] WANG Y Y, WANG S S, LU C S, et al. Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125 [J]. Sensors and Actuators B: Chemical, 2018, 262: 9-16. doi: 10.1016/j.snb.2018.01.235
    [73] ONO A, TOGASHI H. Highly selective oligonucleotide-based sensor for Mercury(Ⅱ) in aqueous solutions [J]. Angewandte Chemie (International ed. in English), 2004, 43(33): 4300-4302. doi: 10.1002/anie.200454172
    [74] ZHU S S, ZHUO Y, MIAO H, et al. Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg(2+)-thymidine duplexes [J]. Luminescence, 2015, 30(5): 631-636. doi: 10.1002/bio.2797
    [75] XU M D, GAO Z Q, WEI Q H, et al. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification [J]. Biosensors & Bioelectronics, 2016, 79: 411-415.
    [76] YIN J J, HE X X, JIA X K, et al. Highly sensitive label-free fluorescent detection of Hg2+ ions by DNA molecular machine-based Ag nanoclusters [J]. The Analyst, 2013, 138(8): 2350-2356. doi: 10.1039/c3an00029j
    [77] DENG L, ZHOU Z X, LI J, et al. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions [J]. Chemical Communications (Cambridge, England), 2011, 47(39): 11065-11067. doi: 10.1039/c1cc14012d
    [78] ZHANG B Z, WEI C Y. Highly sensitive and selective fluorescence detection of Hg2+ based on turn-on aptamer DNA silver nanoclusters [J]. RSC Advances, 2017, 7(89): 56289-56295. doi: 10.1039/C7RA11566K
    [79] MA H Y, XUE N, WU S J, et al. Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification [J]. Microchimica Acta, 2019, 186: 307.
    [80] YIN B C, MA J L, LE H N, et al. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection [J]. Chemical Communications (Cambridge, England), 2014, 50(100): 15991-15994. doi: 10.1039/C4CC07209J
    [81] ZHANG B Z, WEI C Y. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor [J]. Talanta, 2018, 182: 125-130. doi: 10.1016/j.talanta.2018.01.061
    [82] WANG J, ZHANG Z Y, GAO X, et al. A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection [J]. Sensors and Actuators B: Chemical, 2019, 282: 712-718. doi: 10.1016/j.snb.2018.11.121
    [83] LI C Y, WEI C Y. DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions [J]. Sensors and Actuators B: Chemical, 2017, 242: 563-568.
    [84] XIE J P, ZHENG Y G, YING J Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions [J]. Chemical Communications, 2010, 46(6): 961-963. doi: 10.1039/B920748A
    [85] LI X M, SHI J, CHEN C, et al. One-step, visual and sensitive detection of phorate in blood based on a DNA-AgNC aptasensor [J]. New Journal of Chemistry, 2018, 42(8): 6293-6298. doi: 10.1039/C8NJ00958A
    [86] CHEN C, SHI J, GUO Y D, et al. A novel aptasensor for malathion blood samples detection based on DNA-silver nanocluster [J]. Analytical methods, 2018, 10(16): 1928-1934. doi: 10.1039/C8AY00428E
    [87] 边孟孟, 李小青, 袁亚利. 基于DNA保护的银纳米簇荧光探针检测啶虫脒 [J]. 食品安全质量检测学报, 2019, 10(10): 2937-2941. doi: 10.3969/j.issn.2095-0381.2019.10.017

    BIAN M M, LI X Q, YUAN Y L. Sensitive detection of acetamiprid silver nanoclusters fluorescent probes based on DNA protection [J]. Journal of Food Safety & Quality, 2019, 10(10): 2937-2941(in Chinese). doi: 10.3969/j.issn.2095-0381.2019.10.017

    [88] ZHANG Y L, ZHU Z Y, TENG X, et al. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator [J]. Talanta, 2019, 202: 279-284. doi: 10.1016/j.talanta.2019.05.013
    [89] LI J X, JIANG D, SHAN X L, et al. An “off-on” electrochemiluminescence aptasensor for microcystin-LR assay based on the resonance energy transfer from PTCA/NH2-MIL-125(Ti) to gold nanoparticles [J]. Microchimica Acta, 2020, 187: 474.
    [90] LIU X Q, TANG Y F, LIU P P, et al. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy [J]. Analyst, 2019, 144(5): 1671-1678. doi: 10.1039/C8AN01971A
    [91] LI X Y, CHENG R J, SHI H J, et al. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples [J]. Journal of Hazardous Materials, 2016, 304: 474-480.
    [92] HE D Y, WU Z Z, CUI B, et al. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR [J]. Food Chemistry, 2019, 278: 197-202. doi: 10.1016/j.foodchem.2018.11.071
    [93] TAGHDISI S M, DANESH N M, RAMEZANI M, et al. A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl [J]. Talanta, 2017, 166: 187-192. doi: 10.1016/j.talanta.2017.01.053
    [94] PANG P F, TENG X, CHEN M, et al. Ultrasensitive enzyme-free electrochemical immunosensor for microcystin-LR using molybdenum disulfide/gold nanoclusters nanocomposites as platform and Au@Pt core-shell nanoparticles as signal enhancer [J]. Sensors and Actuators B: Chemical, 2018, 266: 400-407.
    [95] GAN C F, LING L, HE Z Y, et al. In-situ assembly of biocompatible core-shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection [J]. Biosensors and Bioelectronics, 2016, 78: 381-389.
    [96] ZANATO N, TALAMINI L, SILVA T R, et al. Microcystin-LR label-free immunosensor based on exfoliated graphite nanoplatelets and silver nanoparticles [J]. Talanta, 2017, 175: 38-45. doi: 10.1016/j.talanta.2017.07.021
    [97] XU Z L, YE S L, LUO L, et al. Fluorescent enzyme-linked immunoassay based on silane-doped carbon dots for sensitive detection of microcystin-LR in water and crucian samples [J]. Science of The Total Environment, 2020, 708: 134614.
    [98] 沈强, 李嗣新, 胡俊. 微囊藻毒素HPLC快速检测方法研究 [J]. 环境科学与技术, 2017, 40(2): 103-106.

    SHEN Q, LI S X, HU J. Study on rapid analysis of microcystins by HPLC [J]. Environmental Science & Technology, 2017, 40(2): 103-106(in Chinese).

    [99] KHAN I M, ZHAO S, NIAZI S, et al. Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin [J]. Sensors and Actuators B: Chemical, 2018, 277: 328-335. doi: 10.1016/j.snb.2018.09.021
    [100] ZHANG J, XIA Y K, CHEN M, et al. A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(Ⅱ)-ion signal-enhancement for simultaneous detection of OTA and AFB1 [J]. Sensors and Actuators B: Chemical, 2016, 235: 79-85.
    [101] ZHOU Z X, DU Y, DONG S J. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules [J]. Biosensors and Bioelectronics, 2011, 28(1): 33-37.
    [102] SHARON E, ENKIN N, ALBADA B, et al. Aptasensors based on supramolecular structures of nucleic acid-stabilized Ag nanoclusters [J]. Chemical Communications, 2015, 51(6): 1100-1103. doi: 10.1039/C4CC08263J
    [103] ENKIN N, WANG F A, SHARON E, et al. Multiplexed analysis of genes using nucleic acid-stabilized silver-nanocluster quantum dots [J]. ACS Nano, 2014, 8(11): 11666-11673. doi: 10.1021/nn504983j
    [104] YAO Y Y, WANG X Z, DUAN W N, et al. A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads [J]. Analyst, 2018, 143: 709-714. doi: 10.1039/C7AN01765K
  • 加载中
图( 4) 表( 2)
计量
  • 文章访问数:  4839
  • HTML全文浏览数:  4839
  • PDF下载数:  108
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-02-18
  • 刊出日期:  2021-08-27

基于DNA模板的核酸适体-金属纳米簇在环境检测中的研究进展

    通讯作者: Tel:13683124746,E-mail:longf04@ruc.edu.cn
  • 中国人民大学环境学院,北京,100872
基金项目:
中国人民大学2020年度拔尖创新人才培育资助计划成果和北京市自然科学基金-海淀原始创新联合基金(L182045)资助

摘要: 

由于优异的光学性能、良好的生物相容性、低毒性和精确可控性等优势,基于DNA模板的金属纳米簇在生物传感、生物成像和疾病治疗等领域获得了广泛的研究与应用。核酸适体作为特异性识别探针,将其与DNA模板的金属纳米簇相结合,可获得生化传感平台的新型荧光探针。本文介绍DNA模板金属纳米簇,简要概述了核酸适体-金属纳米簇的设计与合成,最后重点介绍其在环境检测方面的应用及发展前景。

English Abstract

  • 随着经济与工业的快速发展,环境污染成为世界各国必须面对的严峻问题。环境检测作为环境管理最重要的技术手段之一,在污染控制和治理上发挥着不可替代的作用。目前,环境污染物的检测仍依赖于传统分析技术,如高效液相色谱法、质谱法、原子吸收光谱等,而这些技术都面临着操作复杂,检测周期长,难以原位现场检测等问题[1-3]。如今,世界上的水质检测标准不断提高,常规污染与多类型有毒污染物共存,水体中检出的新型污染物种类越来越多,这些都对现有检测技术提出了很大的挑战。生物传感技术具有检测速度快、操作方便、检测成本低等诸多优势,为环境检测分析开辟了新方向[4-5]

    近年来,核酸适体因高特异性和稳定性在生物传感领域中获得广泛研究,最为常见的则是荧光分析法[6-7]。然而荧光法必需的标记过程十分复杂,且不可避免地影响核酸适体与靶标的结合能力。因此,免荧光标记型的核酸适体成为生物传感领域的研究热点。金属纳米簇凭借其独特的光学性能,成为免标记荧光分析中极具潜力的新型光学材料[8-10]。以DNA为模板的金属纳米簇不仅具有优异光稳定性和低毒性,而且可通过改变DNA链的长度与碱基序列对光学特性进行调控[11-13]。将核酸适体引入金属纳米簇的DNA模板,可使金属纳米簇作为光学探针的同时获得识别靶标的能力。迄今为止,核酸适体与以DNA为模板的金属纳米簇的结合已被广泛应用于多种领域的分析检测[14-16]

    目前,关于以DNA模板金属纳米簇的性质、合成与应用等方面已有相关综述,也有文献对其在分析检测中的应用进行了评述[11,13,17]。然而,还未有聚焦于以DNA模板的核酸适体-金属纳米簇的专题研究,以及其在环境分析中的研究现状。本文将对于DNA模板的核酸适体-金属纳米簇的设计与合成进行概述,重点介绍其在环境检测方面的应用,并进一步讨论其存在的问题与发展前景。

  • 金属纳米簇(Metal nanoclusters, M NCs)是一种由几个或数十个金属原子构成的纳米材料,尺寸接近费米波长(< 2 nm)[9,18]。由于出众荧光性能和低毒性,金属纳米簇在荧光成像分析、环境监测和医学诊断等领域具有很好的应用价值[19-21]。金属纳米簇本身具有易团聚的趋势而形成较大的金属颗粒,需要合适的模板增强其稳定性。研究发现,金属阳离子和核苷酸碱基或磷酸基之间具有强烈亲和力,且制备过程反应温和,使得DNA作为模板广泛地应用于荧光金属纳米簇的合成。以DNA为模板的优势在于[20,22]:(1)DNA作为生物分子具有无毒性;(2)DNA序列可以灵活设计和精确控制;(3)DNA作为小分子模板,形成的金属纳米簇不易被掩埋,有助于荧光基团和猝灭基团之间进行能量转移;(4)DNA模板方便引入核酸适体,获得特异性识别靶标的免标记荧光探针。以下介绍基于DNA模板的单金属和双金属金属纳米簇的制备方法,并将部分纳米簇的理化性质总结于表1

  • 2012年,Liu课题组[23]首次以富C(poly C)和富A(poly A)序列的DNA为模板,HAuCl4为金源,柠檬酸为缓冲液和还原剂,在低pH和中性pH下合成了荧光金纳米簇。同年,Shao小组[24]研究了不同DNA模板对荧光特性的影响,发现基于发夹结构DNA模板的金纳米簇的荧光特性与loop环的碱基种类密切相关,其中胞嘧啶环的存在更能获得荧光特性良好的金纳米簇。基于依赖于DNA模板的荧光特性,很多研究将Au NCs作为新型荧光探针用于多种生化分析中,如DNA杂交和突变分析,生物标记以及生物传感分析等方面[25-27]。虽然金纳米簇与其他金属纳米簇相比稳定性最好,但是以DNA为模板合成Au NCs却最不简单。纳米簇的形成需要前体化合物与DNA模板强烈结合,然而常见的前体物AuCl4和DNA都为负电荷,很难通过静电作用进行结合。因此,DNA-Au NCs的应用需要研究更加简便快速的合成方法。

  • 2004年,Dickson研究小组[28]采用含有12个胞嘧啶的DNA模板,在NaBH4为还原剂的条件下,首次合成了DNA-银纳米簇,具有水溶性好、稳定性高的特点。研究表明,DNA模板的胞嘧啶与Ag0具有强烈的相互作用,寡核苷酸与1—4个Ag0的结合而在DNA模板上形成了银纳米簇。Gwinn小组[29]的研究也在理论上进一步证实了胞嘧啶碱基对Ag NCs的亲和性是最强的。因此,绝大多数的研究都用富C序列的DNA模板合成荧光Ag NCs。近年来,研究发现除了合成条件之外,DNA模板本身的性质如长度,碱基种类以及二级结构等都对银纳米簇的荧光特性有着重要影响[30-32]

    目前,DNA-Ag NCs的DNA模板主要包括富C序列的单链DNA、不同结构的双链DNA、i-motif和G-四联体等结构[13]。Dickson课题组[33]利用模板转换法也能合成DNA-Ag NCs,并且能够提高荧光强度和专一性。2012年,Li等[34]研究发现碱基序列对于银纳米簇存在荧光增强效应,即当富G序列靠近时,基于富C序列DNA模板的Ag NCs的荧光强度将会显著增强,并且荧光增强效果与富G序列的数目密切相关[35-36]。这种现象已经成为以DNA为模板的银纳米簇传感分析中常用的信号转化模式。至今DNA-Ag NCs已经在金属离子、核酸分子和小分子等检测中得到了广泛研究与应用[37-39]。然而,DNA-Ag NCs的量子产率虽高,但合成时间较长以及易被氧化是其应用的限制所在。

  • 2010年,Mokhir课题组[40]发现双链DNA能够介导合成荧光铜纳米颗粒,胸腺嘧啶(T)和铜离子之间的亲和作用,使得二价铜离子在DNA模板上富集并被还原成铜原子。2013年,Wang课题组[41]以富T碱基的单链DNA为模板合成了铜纳米簇,通过改变富T碱基的长度对铜纳米簇的大小进行调节。Liu等[42]的研究也发现含有富T序列的单链DNA能够合成铜纳米颗粒,且其荧光性质与双链DNA为模板的较为一致。至此,研究证明双链和单链DNA模板都能用于合成铜纳米簇。此外,Qing等[43]还发现双链DNA合成铜纳米簇的荧光强度与模板中AT/TA碱基对的聚合度和长度高度相关。相对而言,DNA-铜纳米簇的合成过程更为简单快速,较大的斯托克斯位移能有效避免背景信号干扰,合成序列既有单链也有双链DNA,设计合成更为灵活,重要的是铜元素安全无毒,合成成本低廉且环境友好。至今,DNA-铜纳米簇已应用到牛奶中三聚氰胺[44]、铅离子[45]、生物硫醇[46]、多巴胺[47]、汞离子[48]等物质的检测。然而,DNA-Cu NCs的光稳定性有待提高,如何避免光漂白是其面临的一大问题。

  • 研究表明,向单金属纳米材料中引入另一种金属能够使其性能得到提升,通过调节金属比例对结构和性能进行调控,为拓展金属纳米簇的应用提供了更大的空间。Chang课题组[49-50]发现,将Cu2+引入DNA-Ag NCs能够明显增强体系荧光强度,并且所得的Cu/Ag NCs具有良好的稳定性。在此基础上,DNA-Cu/Ag NCs已被用于腺苷[51]、蛋白质[52]、微小RNA[53]、H2S[54]等的检测。之后,该课题组[55]开发了荧光金银纳米簇(DNA-Au/Ag NCs)的简单合成方法,所得纳米簇同样具有很好的稳定性。Zheng等[56]通过简单的一步合成法获得了Ag/Pt NCs,并证明了富含C的DNA模板在纳米簇的形成中起着重要的作用,在此基础上开发了一种用于靶凝血酶检测的免标记比色适体传感器。因此,通过对DNA模板的合理设计,能够制备出性能更加优异的双金属纳米簇,有利于拓展金属纳米簇在多种领域的研究与应用。

  • 基于DNA-金属纳米簇的生化传感分析方法,主要来源于目标物对荧光的淬灭效应或增强效应,即“turn-off”型和“turn-on”型两种策略。但是,由于环境样品的复杂性,除目标物质外,可能存在的干扰物质或环境因素都会对检测过程带来影响。现有研究可通过添加多种掩蔽剂的方法确保其特异性,但不免会增加操作的复杂性和结果的准确性。为降低传感分析中的背景干扰,提高检测的特异性和灵敏度,引入特异性识别目标物的核酸适体成为可选方案。

  • 核酸适体(aptamer)是通过指数富集配体系统进化(SELEX)技术筛选得到的短链寡核苷酸,可以是单链DNA或RNA[57-58]。核酸适体具有灵活的空间构象,能够折叠形成特殊而稳定的二级或三级结构,且其识别位点能够与靶分子特异性结合而形成强亲和力复合物[59]。作为生物识别元件,核酸适体与传统抗体相比,具有体外合成简单,靶目标范围广泛,易于修饰,稳定性高等独特优势,在生化分析、临床诊断、药物筛选和环境检测等领域有着广泛应用[60-62]

    核酸适体传感技术由核酸适体识别其靶标,根据结合过程带来的信号变化实现对靶标的定性定量分析。荧光标记策略通过直接检测荧光信号变化来跟踪目标,且容易设计和方便使用,因此在核酸适体生物传感领域占据主导地位[7,63]。然而,核酸适体的荧光标记成本较高,标记过程复杂耗时,而且会导致核酸适体与靶标的结合受到影响,从而降低其传感性能。免荧光标记方法为简单快速的核酸适体分析提供了有效的解决方案[64-65]。一方面,无需复杂且昂贵的标记过程,确保核酸适体的传感性能。另一方面核酸适体本身设计灵活,若自身可产生荧光,就可以通过改变其序列对性能进行调控,给其发展与应用带来无限的可能。

  • 以DNA为模板的荧光纳米簇,既具有荧光纳米簇良好的光稳定性,低毒性和超小粒径,同时DNA模板序列易于设计且合成方法简单。同为核苷酸序列,金属纳米簇的DNA模板和核酸适体可以通过碱基序列的设计相结合。因此,将DNA-金属纳米簇与核酸适体进行有机结合,既可成为核酸适体的免标记探针,同时可为金属纳米簇带来特异性识别功能[16,66]。原则上,只要含有成簇序列和识别序列即可构建DNA核酸适体-金属纳米簇。目前,核酸适体-金属纳米簇模板的设计有4种策略(图1):识别序列与成簇序列为同一序列;识别序列与成簇序列直接相连;识别序列与成簇序列由中间序列相连;识别序列与成簇序列由碱基互补配对相连[67-70]。研究表明,无论是先合成金属纳米簇的“前合成”策略,还是先识别靶物质的“后合成”策略,将同一序列进行成簇和识别或者两种序列直接相连,都可能对后续的特异性识别或金属簇合成产生影响[71-72]。因此,在两种序列之间加入一定数量的“无关”碱基作为“中间臂”,可以DNA核酸适体-金属纳米簇具有优异的性能。

    因此,核酸适体-金属纳米簇的DNA模板一般包括3部分:(1)识别序列,即目标物的核酸适体片段,能够选择性与目标物结合,是荧光探针选择性和灵敏度的关键;(2)成簇序列,通过该序列合成金属纳米簇并带来荧光信号功能,是荧光探针的信号来源;(3)中间序列,连接识别序列与成簇序列,确保探针具有稳定的光学性质。如此设计的DNA模板,具有很好的灵活性和可调控性,通过改变两种序列碱基的种类及数目,以及选择最佳识别序列对最终模板进行优化。同时,对于不同的靶物质或者多种靶物质的同时分析,也简单地通过更换或加入不同的识别序列来实现。

  • 基于DNA模板的金属纳米簇作为新型荧光探针,可通过目标物对DNA-纳米簇荧光的影响构建传感分析平台。然而,环境因素的干扰会对检测结果的准确性带来影响。将核酸适体引入DNA模板,可以提高检测方法的特异性,近年来在多种环境污染物的检测中获得研究与应用。

  • 汞是环境污染物中较为普遍且高毒性的重金属元素,能够在生物体内积累,对人体造成严重的健康危害。自2006年Ono等[73]发现Hg2+能够通过特异性作用与T碱基形成稳定的T-Hg2+-T复合错配结构以来,基于核酸适体的Hg2+的灵敏检测方法不断出现。Zhu等[74]采用成簇序列和识别序列直接相连的方式,设计出序列为5’-CCCCCCCCCCCCCCCCCCTTTTTT-3’的DNA模板,其中C12序列用于合成金纳米簇而T6序列用于特异性识别汞离子。如图2a所示,当Hg2+存在时,T-Hg2+-T结构的形成使得金纳米簇之间产生双链结构并聚集,从而降低体系的荧光信号,基于此原理建立定量检测方法,检测限为0.083 μmol·L−1。研究通过HR-TEM分析发现,当Hg2+存在时,DNA-Au NCs发生明显聚集且尺寸变大,证明了T-Hg2+-T结构的形成带来荧光猝灭效应,进一步验证了其传感原理。Xu等[75]将DNA-Ag NC与核酸外切酶Ⅲ辅助的靶循环扩增相结合,建立了用于汞离子的免标记荧光检测方法(图2c)。Yin等[76]构建了具有特殊结构的DNA分子机器,由汞离子触发的T-Hg2+-T结构使得DNA分子机器合成Ag NCs并产生荧光,实现定量检测。在此过程中,产物序列的重复合成及其在Ag NCs合成中的模板效应使得荧光信号不断放大,检测限可达0.08 nmol·L−1。这种“turn-on”模式在汞离子的高效检测中获得了诸多应用[77-79]

    Pb2+能够特异性地引发G4核酸适体产生独特的高级结构,通过Hoogsteen-type配对与富G碱基形成具有堆叠阵列结构的G-四联体。研究发现,当两个深色DNA-Ag NCs通过互补连接体相互封闭时,荧光强度会大大增强[80],基于此原理,Zhang等[81]合成了含有成簇序列和Pb2+适体序列的DNA模板,利用适体对Pb2+的高度特异性使得DNA-Ag NCs紧密结合而增强了荧光强度,建立了Pb2+的定量检测方法。Wang等基于Pb2+特异性DNAzyme结构,构建了以DNA-Ag NCs为荧光基团的新型比率纳米传感器,用于Pb2+的超灵敏和特异性检测[82]。需要注意的是,一些重金属离子对纳米簇存在亲和力,如Hg2+-Au+的金属亲和作用能导致荧光猝灭,因此需要深入研究响应机理,进一步提高纳米簇在检测中的选择性[83-84]

  • 近年来,愈来愈严格的农药残留限量标准使得快速、高效、便捷的有机农药检测技术成为了环境检测中的重要研究课题。Li等[85]设计了一种基于DNA-Ag NCs的核酸适体生物传感器,利用甲拌磷存在会引发DNA-Ag NCs聚集而带来颜色变化,实现了有机磷农药甲拌磷的快速测定,检测限为0.012 ng·mL−1图3a)。基于类似原理,Chen等[86]构建了以DNA-银纳米簇为探针的核酸适体传感器,用于生物样品中马拉硫磷的简便、高效检测(图3b)。边孟孟等[87]将啶虫脒的核酸适体与成簇序列设计为同一DNA链,当啶虫脒存在时,其与起到保护作用的DNA发生结合,使得Ag NCs失去保护,从而产生荧光猝灭,基于此对啶虫脒进行定量检测,检测限为2.8 μmol·L−1。这些农药分子的检测原理极具普适性,通过改变DNA序列中的核酸适体种类能够实现其他农药分子的检测。

  • 生物毒素是由生物机体分泌产生的有毒化学物质,广泛存在于食品和环境中,给人类健康和环境安全带来严重威胁。Zhang等[88]以发夹式DNA模板的铜纳米簇为荧光探针,建立了水环境中微囊藻毒素LR的定量检测方法(图4)。发夹式DNA模板的中间区域为MC-LR的核酸适体片段,而富含AT碱基的互补双链茎作为CuNCs的模板。当MC-LR存在时,由于MC-LR与适体环的高亲和力,使得发夹探针向单链DNA结构转变,导致荧光猝灭。通过荧光强度的变化实现了浓度范围在0.005—1200 μg·L−1的MC-LR定量检测,检测限为0.003 ng·L−1表2总结了近年发展出的MC-LR检测方法的分析性能[89-98]。可以看出,以核酸适体作为识别元件构建传感器,除了比色法外,荧光法、电化学发光法、电化学法以及表面增强等离子体共振(SERS)的灵敏度均在ng·L−1水平,与基于抗原抗体的免疫传感器相比更为灵敏。与传统的LC-MS和ELISA技术相比,核酸适体传感器在保证检测灵敏度的同时,具有操作简单和检测速度快的优势。在荧光法检测中,基于DNA模板的核酸适体铜纳米簇[86]与基于荧光染料的核酸适体传感器[93]相比,检测速度更快(仅需10 min),且纳米材料制备周期更短,在MC-LR的检测中具有明显优势。

    Khan等[99]基于DNA-核酸适体模板制备了一种适体功能化银纳米团簇(apt-Ag NCs),将其作为荧光传感探针构建了新型的T-2毒素荧光检测方法。为减少成簇与适体序列之间的空间位阻,在两者之间添加了T5(-TTTTT-)连接子,能够获得更强的荧光强度。基于荧光共振能量转移(FRET)原理,实现了T-2毒素的定量检测,检测限为0.93 pg·mL−1。Zhang等[100]开发了一种基于DNA-Ag NCs的同时检测赭曲霉毒素A(OTA)和黄曲霉毒素B1(AFB1)的信号增强荧光分析方法,OTA和AFB1的检测限分别为0.2 pg·mL−1和0.3 pg·mL−1。同样地,通过简单地改变不同目标物的核酸适体序列,能够为同时检测其他真菌毒素提供了新的思路。

  • 随着社会的发展,水体污染物的种类越来越复杂,检测难度越来越大,需要研发快速、灵敏和低成本的检测方法。Zhou等[101]通过核酸适体、富鸟嘌呤(G-rich)DNA和Ag-NCs构建了纳米复合物,基于富含G-序列片段接近增强DNA-Ag NCs荧光强度的原理,实现可卡因的快速检测,检测限为0.1 mol·L−1。Sharon等[102]设计了基于DNA杂交特性形成的超分子传感探针,其中Ag NCs与猝灭基团之间的紧密接近导致荧光猝灭,而当可卡因存在时,发夹结构通过形成相应的适体-底物复合物而打开,导致相应的Ag-NCs的发光增强。该方法通过核酸适体序列的更换,建立了AMP和可卡因两种物质的灵敏检测,检测限分别为4 μmol·L−1和0.3 μmol·L−1。值得注意的是,与该小组先前开发的DNA传感探针相比,核酸适体的引入能够获得更有效的发光效率[103]。近年来,环境水体中抗生素的污染与检测成为热点研究内容。Yao等[104]提出了一种将金纳米簇催化与磁珠分离相结合的方法,建立了卡那霉素化学发光传感平台,检测限为0.035 nmol·L−1,该方法具有良好的选择性和稳定性。

  • 基于DNA模板的核酸适体金属纳米簇,具有低毒性、免标记、特异性高和稳定性强等优点,作为新型荧光探针用于多种研究领域的传感分析中。目前,DNA模板的核酸适体金属纳米簇在环境分析应用方面有了诸多研究与进展,实现了重金属离子、农药残留、生物毒素等多种环境污染物的灵敏高效检测。然而,其进一步发展与应用仍面临着一些挑战。一方面,不同类型的金属纳米簇的DNA制备缺少通用而有效的方法,需要进一步研究实现成熟的制备方法。另一方面,环境样品中的成分较为复杂,金属纳米簇的荧光特性易受到干扰,导致检测结果不准确,如何降低环境样品基质的影响及改善荧光性能是重要的研究方向。此外,检测过程中核酸适体纳米簇与目标分析物的稳定结合状态,对于分析结果的稳定性和可靠性十分重要。最后,对金属纳米簇在传感分析中的响应机理进行研究,有助于提高检测方法的分析性能。随着研究的深入,基于DNA模板的核酸适体金属纳米簇将在环境检测中展现出更广阔的应用前景。

参考文献 (104)

目录

/

返回文章
返回