-
随着经济与工业的快速发展,环境污染成为世界各国必须面对的严峻问题。环境检测作为环境管理最重要的技术手段之一,在污染控制和治理上发挥着不可替代的作用。目前,环境污染物的检测仍依赖于传统分析技术,如高效液相色谱法、质谱法、原子吸收光谱等,而这些技术都面临着操作复杂,检测周期长,难以原位现场检测等问题[1-3]。如今,世界上的水质检测标准不断提高,常规污染与多类型有毒污染物共存,水体中检出的新型污染物种类越来越多,这些都对现有检测技术提出了很大的挑战。生物传感技术具有检测速度快、操作方便、检测成本低等诸多优势,为环境检测分析开辟了新方向[4-5]。
近年来,核酸适体因高特异性和稳定性在生物传感领域中获得广泛研究,最为常见的则是荧光分析法[6-7]。然而荧光法必需的标记过程十分复杂,且不可避免地影响核酸适体与靶标的结合能力。因此,免荧光标记型的核酸适体成为生物传感领域的研究热点。金属纳米簇凭借其独特的光学性能,成为免标记荧光分析中极具潜力的新型光学材料[8-10]。以DNA为模板的金属纳米簇不仅具有优异光稳定性和低毒性,而且可通过改变DNA链的长度与碱基序列对光学特性进行调控[11-13]。将核酸适体引入金属纳米簇的DNA模板,可使金属纳米簇作为光学探针的同时获得识别靶标的能力。迄今为止,核酸适体与以DNA为模板的金属纳米簇的结合已被广泛应用于多种领域的分析检测[14-16]。
目前,关于以DNA模板金属纳米簇的性质、合成与应用等方面已有相关综述,也有文献对其在分析检测中的应用进行了评述[11,13,17]。然而,还未有聚焦于以DNA模板的核酸适体-金属纳米簇的专题研究,以及其在环境分析中的研究现状。本文将对于DNA模板的核酸适体-金属纳米簇的设计与合成进行概述,重点介绍其在环境检测方面的应用,并进一步讨论其存在的问题与发展前景。
基于DNA模板的核酸适体-金属纳米簇在环境检测中的研究进展
Research progress of DNA-templated aptamer metal nanoclusters in environmental detection
-
摘要:
由于优异的光学性能、良好的生物相容性、低毒性和精确可控性等优势,基于DNA模板的金属纳米簇在生物传感、生物成像和疾病治疗等领域获得了广泛的研究与应用。核酸适体作为特异性识别探针,将其与DNA模板的金属纳米簇相结合,可获得生化传感平台的新型荧光探针。本文介绍DNA模板金属纳米簇,简要概述了核酸适体-金属纳米簇的设计与合成,最后重点介绍其在环境检测方面的应用及发展前景。
Abstract: DNA-templated metal nanoclusters have been widely studied and applied in the fields of biosensor, biological imaging and disease treatment because of their excellent optical properties, good biocompatibility, low toxicity and precise controllability. Novel fluorescent probes can be obtained through combining aptamers, specific recognition probes, with DNA-templated metal nanoclusters, which can be used in biochemical sensing platform. This review firstly introduced the DNA-templated metal nanoclusters, briefly outlined the design and synthesis of aptamer-metal nanoclusters, and finally focused on the application of aptamer-metal nanoclusters in environmental detection and their future perspectives.-
Key words:
- metal nanoclusters /
- DNA-templated /
- aptamer /
- environmental detection
-
表 1 不同DNA模板金属纳米簇的理化性质
Table 1. Physical and chemical properties of different DNA-templated metal nanoclusters
金属纳米簇
Metal nanoclusters原子数量
Number of atoms尺寸/nm
Linear range量子产率
Quantum yield发射波长/nm
Emission wavelength参考文献
ReferenceDNA-AuNCs 21 >5 — 725 [24] — 3 1.9% 475 [25] <9 <2 2.2 % 400—500 [27] DNA-AgNCs 2-6 — 8%—61% 536-—644 [32] — 1.5 — 573 [38] — 2.4 — 640 [39] DNA-Cu NCs — 1—2 — 598 [44] — 3—5 6.1% 610 [47] DNA-Cu/AgNCs 2 Ag—1 Cu — 51.2% 573 [52] — 2.0 ± 0.2 — 568 [54] DNA-Au/Ag NCs 2 Au— 1 Ag — 4.5% 630 [55] DNA-Ag/Pt NCs — 2.11 — 610 [56] 表 2 部分微囊藻毒素-LR检测方法的性能对比
Table 2. Performance comparison of some microcystin-LR detection methods
检测方法
Detection method检测限
Limit of detection线性范围
Linear range检测时间
Detection time参考文献
Reference荧光适体传感器 0.003 ng·L−1 0.005—1200 μg·L−1 10 min [88] 电化学发光适体传感器 0.0036 ng·L−1 9.95 pg·L−1—99.5 μg·L−1 60 min [89] 电化学适体传感器 1.99 ng·L−1 4.97 ng·L−1—2.9 μg·L−1 120 min [90] 比色适体传感器 0.36 μg·L−1 0.5 μg·L−1—7.46 mg·L−1 30 min [91] SERS适体传感器 0.002 μg·L−1 0.01—200 μg·L−1 135 min [92] 荧光适体传感器 0.137 μg·L−1 0.4 μg·L−1—1.2 mg·L−1 75 min [93] 电化学免疫传感器 0.3 ng·L−1 10 ng·L−1—10 mg·L−1 60 min [94] 电化学免疫传感器 0.004 μg·L−1 0.005—50 μg·L−1 120 min [95] 电化学免疫传感器 0.017 μg·L−1 0.5—5000 μg·L−1 10 min [96] ELISA 0.6 ng·L−1 0.001—3.2 μg·L−1 74 min [97] LC-MS 0.8 μg·L−1 2.5—2000 μg·L−1 15 min [98] -
[1] 王建宇, 李丽, 王蕴平, 等. 在线固相萃取-超高效液相色谱法检测水中15种多环芳烃类污染物 [J]. 环境化学, 2018, 37(12): 2832-2836. WANG J Y, LI L, WANG Y P, et al. 15 kinds of polycyclic aromatic hydrocarbons in water were detected by solid phase extraction and ultra-high performance liquid chromatography [J]. Environmental Chemistry, 2018, 37(12): 2832-2836(in Chinese).
[2] MUTER O, BARTKEVICS V. Advanced analytical techniques based on high resolution mass spectrometry for the detection of micropollutants and their toxicity in aquatic environments [J]. Current Opinion in Environmental Science & Health, 2020, 18: 1-6. [3] TUNÇELI A, ULAŞ A, ACAR O, et al. Solid phase extraction of cadmium and lead from water by amberlyst 15 and determination by flame atomic absorption spectrometry [J]. Bulletin of Environmental Contamination and Toxicology, 2019, 102(2): 297-302. doi: 10.1007/s00128-018-2498-y [4] QI X, WANG S, LI T, et al. An electroactive biofilm-based biosensor for water safety: Pollutants detection and early-warning [J]. Biosensors and Bioelectronics, 2021, 173: 112822. doi: 10.1016/j.bios.2020.112822 [5] EJEIAN F, ETEDALI P, MANSOURI-TEHRANI H A, et al. Biosensors for wastewater monitoring: A review [J]. Biosensors and Bioelectronics, 2018, 118: 66-79. [6] 宋丹, 杨荣, 罗强, 等. 核酸适体及其在环境检测中的应用 [J]. 环境污染与防治, 2018, 40(6): 717-722, 727. SONG D, YANG R, LUO Q, et al. Aptamers and their applications in environmental detection [J]. Environmental Pollution and Control, 2018, 40(6): 717-722, 727(in Chinese).
[7] NGUYEN V T, KWON Y S, GU M B. Aptamer-based environmental biosensors for small molecule contaminants [J]. Current Opinion in Biotechnology, 2017, 45: 15-23. doi: 10.1016/j.copbio.2016.11.020 [8] 穆晋, 杨巾栏, 张大伟, 等. 荧光金属纳米团簇的制备及其在环境污染物检测中的应用研究进展 [J]. 分析化学, 2021, 49(3): 319-329. doi: 10.1016/S1872-2040(21)60082-8 MU J, YANG J L, ZHANG D W, et al. Progress in preparation of metal nanoclusters and their application in detection of environmental pollutants [J]. Chinese Journal of Analytical Chemistry, 2021, 49(3): 319-329(in Chinese). doi: 10.1016/S1872-2040(21)60082-8
[9] SHANG L, XU J, NIENHAUS G U. Recent advances in synthesizing metal nanocluster-based nanocomposites for application in sensing, imaging and catalysis [J]. Nano Today, 2019, 28: 100767. doi: 10.1016/j.nantod.2019.100767 [10] QIAO Z J, ZHANG J, HAI X, et al. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics [J]. Biosensors and Bioelectronics, 2021, 176: 112898. [11] XU J, ZHU X, ZHOU X, et al. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters [J]. TrAC Trends in Analytical Chemistry, 2020, 124: 115786. [12] GUO Y H, PAN X Y, ZHANG W Y,, et al. Label-free probes using DNA-templated silver nanoclusters as versatile reporters [J]. Biosensors and Bioelectronics, 2020, 150: 111926. [13] 贺锦灿, 李攻科, 胡玉玲. 基于DNA模板制备的金属纳米簇及其在分析检测中应用进展 [J]. 分析科学学报, 2018, 34(1): 127-133. HE J C, LI G K, HU Y L. Application of DNA-templated metal nano-clusters on analysis and detection [J]. Journal of Analytical Science, 2018, 34(1): 127-133(in Chinese).
[14] XU J N, WEI C Y. The aptamer DNA-templated fluorescence silver nanoclusters: ATP detection and preliminary mechanism investigation [J]. Biosensors and Bioelectronics, 2017, 87: 422-427. [15] ZHU J B, ZHANG L B, TENG Y, et al. G-quadruplex enhanced fluorescence of DNA-silver nanoclusters and their application in bioimaging [J]. Nanoscale, 2015, 7(31): 13224-13229. doi: 10.1039/C5NR03092G [16] ZHANG B Z, WEI C Y. An aptasensor for the label-free detection of thrombin based on turn-on fluorescent DNA-templated Cu/Ag nanoclusters [J]. RSC Advances, 2020, 10(58): 35374-35380. doi: 10.1039/D0RA04609D [17] SONG C X, XU J Y, CHEN Y, et al. DNA-templated fluorescent nanoclusters for metal ions detection [J]. Molecules, 2019, 24: 4189. doi: 10.3390/molecules24224189 [18] GUO Y H, AMUNYELA H T N N, CHENG Y L, et al. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications [J]. Food Chemistry, 2021, 335: 127657. [19] OU G Z, ZHAO J, CHEN P, et al. Fabrication and application of noble metal nanoclusters as optical sensors for toxic metal ions [J]. Analytical and Bioanalytical Chemistry, 2018, 410(10): 2485-2498. doi: 10.1007/s00216-017-0808-6 [20] CHEN Y X, PHIPPS M L, WERNER J H, et al. DNA templated metal nanoclusters: From emergent properties to unique applications [J]. Accounts of Chemical Research, 2018, 51(11): 2756-2763. doi: 10.1021/acs.accounts.8b00366 [21] WANG B J, ZHAO M, MEHDI M, et al. Biomolecule-assisted synthesis and functionality of metal nanoclusters for biological sensing: A review [J]. Materials Chemistry Frontiers, 2019, 3(9): 1722-1735. doi: 10.1039/C9QM00165D [22] PANDYA A, LAD A N, SINGH S P, et al. DNA assembled metal nanoclusters: Synthesis to novel applications [J]. RSC Advances, 2016, 6(114): 113095-113114. doi: 10.1039/C6RA24098D [23] KENNEDY T A, MACLEAN J L, LIU J. Blue emitting gold nanoclusters templated by poly-cytosine DNA at low pH and poly-adenine DNA at neutral pH [J]. Chemical Communications, 2012, 48: 6845-6847. doi: 10.1039/c2cc32841k [24] LIU G Y, SHAO Y, MA K, et al. Synthesis of DNA-templated fluorescent gold nanoclusters [J]. Gold Bulletin, 2012, 45(2): 69-74. doi: 10.1007/s13404-012-0049-6 [25] WANG H B, BAI H Y, DONG G L, et al. DNA-templated Au nanoclusters coupled with proximity-dependent hybridization and guanine-rich DNA induced quenching: A sensitive fluorescent biosensing platform for DNA detection [J]. Nanoscale Advances, 2019, 1(4): 1482-1488. doi: 10.1039/C8NA00278A [26] WANG Y Y, HU L H, LI L L, et al. Fluorescent gold nanoclusters: Promising fluorescent probes for sensors and bioimaging [J]. Journal of Analysis and Testing, 2017, 1(2): 1-19. [27] LI Z Y, WU Y T, TSENG W L. UV-light-induced improvement of fluorescence quantum yield of DNA-templated gold nanoclusters: Application to ratiometric fluorescent sensing of nucleic acids [J]. ACS Applied Materials & Interfaces, 2015, 7(42): 23708-23716. [28] PETTY J T, ZHENG J, HUD N V, et al. DNA-templated Ag nanocluster formation [J]. Journal of the American Chemical Society, 2004, 126(16): 5207-5212. doi: 10.1021/ja031931o [29] GWINN E G, O'NEILL P, GUERRERO A J, et al. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters [J]. Advanced Materials, 2008, 20(2): 279-283. doi: 10.1002/adma.200702380 [30] RICHARDS C I, CHOI S, HSIANG J C, et al. Oligonucleotide-stabilized Ag nanocluster fluorophores [J]. Journal of the American Chemical Society, 2008, 130(15): 5038-5039. doi: 10.1021/ja8005644 [31] SHARMA J, YEH H C, YOO H, et al. A complementary palette of fluorescent silver nanoclusters [J]. Chemical Communications (Cambridge, England), 2010, 46(19): 3280-3282. doi: 10.1039/b927268b [32] LAN G Y, CHEN W Y, CHANG H T. Control of synthesis and optical properties of DNA templated silver nanoclusters by varying DNA length and sequence [J]. RSC Advances, 2011, 1(5): 802. doi: 10.1039/c1ra00181g [33] YU J, CHOI S, DICKSON R. Shuttle-based fluorogenic silver-cluster biolabels [J]. Angewandte Chemie, 2009, 121(2): 324-326. doi: 10.1002/ange.200804137 [34] LI J J, ZHONG X Q, ZHANG H Q, et al. Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes [J]. Analytical Chemistry, 2012, 84(12): 5170-5174. doi: 10.1021/ac3006268 [35] YEH H C, SHARMA J, HAN J J, et al. A DNA−Silver nanocluster probe that fluoresces upon hybridization [J]. Nano Letters, 2010, 10(8): 3106-3110. doi: 10.1021/nl101773c [36] YIN J J, HE X X, WANG K M, et al. Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization [J]. Analytical Chemistry, 2013, 85(24): 12011-12019. doi: 10.1021/ac402989u [37] GUO W W, YUAN J P, WANG E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion [J]. Chemical Communications (Cambridge, England), 2009(23): 3395-3397. doi: 10.1039/b821518a [38] CHEN J Y, JI X H, TINNEFELD P, et al. Multifunctional dumbbell-shaped DNA-templated selective formation of fluorescent silver nanoclusters or copper nanoparticles for sensitive detection of biomolecules [J]. ACS Applied Materials & Interfaces, 2016, 8(3): 1786-1794. [39] LI C, WEI C. DNA-functionlized silver nanoclusters as label-free fluorescent probe for the highly sensitive detection of biothiols and acetylcholinesterase activity [J]. Sensors and Actuators B: Chemical,, 2017, 240: 451-458. [40] ROTARU A, DUTTA S, JENTZSCH E, et al. Selective dsDNA-templated formation of copper nanoparticles in solution [J]. Angewandte Chemie (International Ed. in English), 2010, 49(33): 5665-5667. doi: 10.1002/anie.200907256 [41] QING Z, HE X, HE D, et al. Poly(thymine)-templated selective formation of fluorescent copper nanoparticles [J]. Angewandte Chemie International Edition, 2013, 52(37): 9901-9904. [42] LIU G Y, SHAO Y, PENG J, et al. Highly thymine-dependent formation of fluorescent copper nanoparticles templated by ss-DNA [J]. Nanotechnology, 2013, 24(34): 345502. doi: 10.1088/0957-4484/24/34/345502 [43] QING T, QING Z, MAO Z, et al. dsDNA-templated fluorescent copper nanoparticles: Poly (AT-TA)-dependent formation [J]. RSC Advances, 2014, 4(105): 61092-61095. doi: 10.1039/C4RA11551A [44] ZHU H W, DAI W X, YU X D, et al. Poly thymine stabilized copper nanoclusters as a fluorescence probe for melamine sensing [J]. Talanta, 2015, 144: 642-647. doi: 10.1016/j.talanta.2015.07.022 [45] OU L J, LI X Y, LIU H W, et al. Poly(thymine)-templated fluorescent copper nanoparticles for ultrasensitive label-free detection of Pb2+ ion [J]. Analytical Sciences, 2014, 30(7): 723-727. doi: 10.2116/analsci.30.723 [46] HU Y H, WU Y M, CHEN T T, et al. Double-strand DNA-templated synthesis of copper nanoclusters as novel fluorescence probe for label-free detection of biothiols [J]. Analytical Methods, 2013, 5(14): 3577-3581. doi: 10.1039/c3ay40088c [47] WANG H B, LI Y, BAI H Y, et al. Fluorescent determination of dopamine using polythymine-templated copper nanoclusters [J]. Analytical Letters, 2018, 51(18): 2868-2877. doi: 10.1080/00032719.2018.1454457 [48] 李婷, 曹忠, 李盼盼, 等. 聚胸腺嘧啶单链DNA-CuNCs荧光增强法用于汞离子的高灵敏检测 [J]. 高等学校化学学报, 2016, 37(9): 1616-1621. LI T, CAO Z, LI P P, et al. High-sensitive fluorescent enhancement detection of Hg(II) ions based on poly(thymine)-templated copper nanoclusters [J]. Chemical Journal of Chinese Universities, 2016, 37(9): 1616-1621(in Chinese).
[49] LAN G Y, HUANG C C, CHANG H T. Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions [J]. Chemical Communications (Cambridge, England), 2010, 46(8): 1257-1259. doi: 10.1039/b920783j [50] SU Y T, LAN G Y, CHEN W Y, et al. Detection of copper ions through recovery of the fluorescence of DNA-templated copper/silver nanoclusters in the presence of mercaptopropionic acid [J]. Analytical Chemistry, 2010, 82(20): 8566-8572. doi: 10.1021/ac101659d [51] AHN J K, KIM H Y, BAEK S, et al. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters [J]. Biosensors and Bioelectronics, 2017, 93: 330-334. [52] LAN G Y, CHEN W Y, CHANG H T. Characterization and application to the detection of single-stranded DNA binding protein of fluorescent DNA-templated copper/silver nanoclusters [J]. The Analyst, 2011, 136(18): 3623-3628. doi: 10.1039/c1an15258k [53] LI R D, WANG Q, YIN B C, et al. Enzyme-free detection of sequence-specific microRNAs based on nanoparticle-assisted signal amplification strategy [J]. Biosensors and Bioelectronics, 2016, 77: 995-1000. [54] DING Y J, LI X M, CHEN C, et al. A rapid evaluation of acute hydrogen sulfide poisoning in blood based on DNA-Cu/Ag nanocluster fluorescence probe [J]. Scientific Reports, 2017, 7(1): 9638. doi: 10.1038/s41598-017-09960-1 [55] CHEN W Y, LAN G Y, CHANG H T. Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions [J]. Analytical Chemistry, 2011, 83(24): 9450-9455. doi: 10.1021/ac202162u [56] ZHENG C, ZHENG A X, LIU B, et al. One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin [J]. Chemical Communications, 2014, 50: 13103-13106. [57] TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249(4968): 505-510. doi: 10.1126/science.2200121 [58] ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346(6287): 818-822. doi: 10.1038/346818a0 [59] KONG H Y, JONGHOE B. Nucleic Acid aptamers: new methods for selection, stabilization, and application in biomedical science [J]. Biomolecules & Therapeutics, 2013, 21(6): 423-434. [60] YUE F L, LI F L, KONG Q Q, et al. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications [J]. Science of The Total Environment, 2021, 762: 143129. doi: 10.1016/j.scitotenv.2020.143129 [61] LI F Q, YU Z G, HAN X D, et al. Electrochemical aptamer-based sensors for food and water analysis: A review [J]. Analytica Chimica Acta, 2019, 1051: 1-23. doi: 10.1016/j.aca.2018.10.058 [62] YANG Y B, YANG X D, YANG Y J, et al. Aptamer-functionalized carbon nanomaterials electrochemical sensors for detecting cancer relevant biomolecules [J]. Carbon, 2018, 129: 380-395. doi: 10.1016/j.carbon.2017.12.013 [63] LI H H, AHMAD W, RONG Y W, et al. Designing an aptamer based magnetic and upconversion nanoparticles conjugated fluorescence sensor for screening Escherichia coli in food [J]. Food Control, 2020, 107: 106761. doi: 10.1016/j.foodcont.2019.106761 [64] LIU F, DING A L, ZHENG J S, et al. A label-free aptasensor for ochratoxin a detection based on the structure switch of aptamer [J]. Sensors, 2018, 18(6): 1769. doi: 10.3390/s18061769 [65] SOLHIA E, HASANZADEHA M. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay [J]. Biomedicine & Pharmacotherapy, 2020, 132: 110849. [66] FANG B Y, AN J, LIU B, et al. Hybridization induced fluorescence enhanced DNA-Ag nanocluster/aptamer probe for detection of prostate-specific antigen [J]. Colloids and Surfaces. B, Biointerfaces, 2019, 175: 358-364. doi: 10.1016/j.colsurfb.2018.12.013 [67] ZHANG Z H, GUO C P, ZHANG S, et al. Carbon-based nanocomposites with aptamer-templated silver nanoclusters for the highly sensitive and selective detection of platelet-derived growth factor [J]. Biosensors and Bioelectronics, 2017, 89(Pt 2): 735-742. [68] LI J J, YOU J, ZHUANG Y P, et al. A “light-up” and “spectrum-shift” response of aptamer-functionalized silver nanoclusters for intracellular mRNA imaging [J]. Chemical Communications, 2014, 50(54): 7107-7110. doi: 10.1039/c4cc00160e [69] DING Y J, LI X M, GUO Y D, et al. Estimation of postmortem interval by vitreous potassium evaluation with a novel fluorescence aptasensor [J]. Scientific Reports, 2017, 7(1): 1868. doi: 10.1038/s41598-017-02027-1 [70] WANG L, WANG M K, SHI F P, et al. Aptamer based fluorescence biosensor for protein kinase activity detection and inhibitor screening [J]. Sensors and Actuators B: Chemical, 2017, 252: 209-214. [71] LEE S T, BEAUMONT D, SU X D, et al. Formulation of DNA chimera templates: Effects on emission behavior of silver nanoclusters and sensing [J]. Analytica Chimica Acta, 2018, 1010: 62-68. doi: 10.1016/j.aca.2018.01.012 [72] WANG Y Y, WANG S S, LU C S, et al. Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125 [J]. Sensors and Actuators B: Chemical, 2018, 262: 9-16. doi: 10.1016/j.snb.2018.01.235 [73] ONO A, TOGASHI H. Highly selective oligonucleotide-based sensor for Mercury(Ⅱ) in aqueous solutions [J]. Angewandte Chemie (International ed. in English), 2004, 43(33): 4300-4302. doi: 10.1002/anie.200454172 [74] ZHU S S, ZHUO Y, MIAO H, et al. Detection of mercury(II) by DNA templated gold nanoclusters based on forming thymidine-Hg(2+)-thymidine duplexes [J]. Luminescence, 2015, 30(5): 631-636. doi: 10.1002/bio.2797 [75] XU M D, GAO Z Q, WEI Q H, et al. Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification [J]. Biosensors & Bioelectronics, 2016, 79: 411-415. [76] YIN J J, HE X X, JIA X K, et al. Highly sensitive label-free fluorescent detection of Hg2+ ions by DNA molecular machine-based Ag nanoclusters [J]. The Analyst, 2013, 138(8): 2350-2356. doi: 10.1039/c3an00029j [77] DENG L, ZHOU Z X, LI J, et al. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions [J]. Chemical Communications (Cambridge, England), 2011, 47(39): 11065-11067. doi: 10.1039/c1cc14012d [78] ZHANG B Z, WEI C Y. Highly sensitive and selective fluorescence detection of Hg2+ based on turn-on aptamer DNA silver nanoclusters [J]. RSC Advances, 2017, 7(89): 56289-56295. doi: 10.1039/C7RA11566K [79] MA H Y, XUE N, WU S J, et al. Fluorometric determination of mercury(II) using positively charged gold nanoparticles, DNA-templated silver nanoclusters, T-Hg(II)-T interaction and exonuclease assisted signal amplification [J]. Microchimica Acta, 2019, 186: 307. [80] YIN B C, MA J L, LE H N, et al. A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection [J]. Chemical Communications (Cambridge, England), 2014, 50(100): 15991-15994. doi: 10.1039/C4CC07209J [81] ZHANG B Z, WEI C Y. Highly sensitive and selective detection of Pb2+ using a turn-on fluorescent aptamer DNA silver nanoclusters sensor [J]. Talanta, 2018, 182: 125-130. doi: 10.1016/j.talanta.2018.01.061 [82] WANG J, ZHANG Z Y, GAO X, et al. A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection [J]. Sensors and Actuators B: Chemical, 2019, 282: 712-718. doi: 10.1016/j.snb.2018.11.121 [83] LI C Y, WEI C Y. DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions [J]. Sensors and Actuators B: Chemical, 2017, 242: 563-568. [84] XIE J P, ZHENG Y G, YING J Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+ interactions [J]. Chemical Communications, 2010, 46(6): 961-963. doi: 10.1039/B920748A [85] LI X M, SHI J, CHEN C, et al. One-step, visual and sensitive detection of phorate in blood based on a DNA-AgNC aptasensor [J]. New Journal of Chemistry, 2018, 42(8): 6293-6298. doi: 10.1039/C8NJ00958A [86] CHEN C, SHI J, GUO Y D, et al. A novel aptasensor for malathion blood samples detection based on DNA-silver nanocluster [J]. Analytical methods, 2018, 10(16): 1928-1934. doi: 10.1039/C8AY00428E [87] 边孟孟, 李小青, 袁亚利. 基于DNA保护的银纳米簇荧光探针检测啶虫脒 [J]. 食品安全质量检测学报, 2019, 10(10): 2937-2941. doi: 10.3969/j.issn.2095-0381.2019.10.017 BIAN M M, LI X Q, YUAN Y L. Sensitive detection of acetamiprid silver nanoclusters fluorescent probes based on DNA protection [J]. Journal of Food Safety & Quality, 2019, 10(10): 2937-2941(in Chinese). doi: 10.3969/j.issn.2095-0381.2019.10.017
[88] ZHANG Y L, ZHU Z Y, TENG X, et al. Enzyme-free fluorescent detection of microcystin-LR using hairpin DNA-templated copper nanoclusters as signal indicator [J]. Talanta, 2019, 202: 279-284. doi: 10.1016/j.talanta.2019.05.013 [89] LI J X, JIANG D, SHAN X L, et al. An “off-on” electrochemiluminescence aptasensor for microcystin-LR assay based on the resonance energy transfer from PTCA/NH2-MIL-125(Ti) to gold nanoparticles [J]. Microchimica Acta, 2020, 187: 474. [90] LIU X Q, TANG Y F, LIU P P, et al. A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy [J]. Analyst, 2019, 144(5): 1671-1678. doi: 10.1039/C8AN01971A [91] LI X Y, CHENG R J, SHI H J, et al. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples [J]. Journal of Hazardous Materials, 2016, 304: 474-480. [92] HE D Y, WU Z Z, CUI B, et al. A novel SERS-based aptasensor for ultrasensitive sensing of microcystin-LR [J]. Food Chemistry, 2019, 278: 197-202. doi: 10.1016/j.foodchem.2018.11.071 [93] TAGHDISI S M, DANESH N M, RAMEZANI M, et al. A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl [J]. Talanta, 2017, 166: 187-192. doi: 10.1016/j.talanta.2017.01.053 [94] PANG P F, TENG X, CHEN M, et al. Ultrasensitive enzyme-free electrochemical immunosensor for microcystin-LR using molybdenum disulfide/gold nanoclusters nanocomposites as platform and Au@Pt core-shell nanoparticles as signal enhancer [J]. Sensors and Actuators B: Chemical, 2018, 266: 400-407. [95] GAN C F, LING L, HE Z Y, et al. In-situ assembly of biocompatible core-shell hierarchical nanostructures sensitized immunosensor for microcystin-LR detection [J]. Biosensors and Bioelectronics, 2016, 78: 381-389. [96] ZANATO N, TALAMINI L, SILVA T R, et al. Microcystin-LR label-free immunosensor based on exfoliated graphite nanoplatelets and silver nanoparticles [J]. Talanta, 2017, 175: 38-45. doi: 10.1016/j.talanta.2017.07.021 [97] XU Z L, YE S L, LUO L, et al. Fluorescent enzyme-linked immunoassay based on silane-doped carbon dots for sensitive detection of microcystin-LR in water and crucian samples [J]. Science of The Total Environment, 2020, 708: 134614. [98] 沈强, 李嗣新, 胡俊. 微囊藻毒素HPLC快速检测方法研究 [J]. 环境科学与技术, 2017, 40(2): 103-106. SHEN Q, LI S X, HU J. Study on rapid analysis of microcystins by HPLC [J]. Environmental Science & Technology, 2017, 40(2): 103-106(in Chinese).
[99] KHAN I M, ZHAO S, NIAZI S, et al. Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin [J]. Sensors and Actuators B: Chemical, 2018, 277: 328-335. doi: 10.1016/j.snb.2018.09.021 [100] ZHANG J, XIA Y K, CHEN M, et al. A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(Ⅱ)-ion signal-enhancement for simultaneous detection of OTA and AFB1 [J]. Sensors and Actuators B: Chemical, 2016, 235: 79-85. [101] ZHOU Z X, DU Y, DONG S J. DNA-Ag nanoclusters as fluorescence probe for turn-on aptamer sensor of small molecules [J]. Biosensors and Bioelectronics, 2011, 28(1): 33-37. [102] SHARON E, ENKIN N, ALBADA B, et al. Aptasensors based on supramolecular structures of nucleic acid-stabilized Ag nanoclusters [J]. Chemical Communications, 2015, 51(6): 1100-1103. doi: 10.1039/C4CC08263J [103] ENKIN N, WANG F A, SHARON E, et al. Multiplexed analysis of genes using nucleic acid-stabilized silver-nanocluster quantum dots [J]. ACS Nano, 2014, 8(11): 11666-11673. doi: 10.1021/nn504983j [104] YAO Y Y, WANG X Z, DUAN W N, et al. A label-free, versatile and low-background chemiluminescence aptasensing strategy based on gold nanocluster catalysis combined with the separation of magnetic beads [J]. Analyst, 2018, 143: 709-714. doi: 10.1039/C7AN01765K