-
砷污染是一个全球性的环境问题。针对轻中度砷污染土壤,通过合理的调控将所产农产品中的砷含量控制在安全范围内,可实现轻中度砷污染土壤的安全利用。硒是人和动物必需的一种微量营养元素,硒的生物强化是当前生产应用研究的热点。研究表明,硒在一定的环境介质中可参与砷的生物化学循环过程,适宜浓度的硒能降低植物对砷的吸收;另一方面,砷在一定条件下也可能改变硒在植物中的代谢及积累进而影响植物硒的生物强化[1]。因此,研究硒和砷之间的交互作用,通过合理调控硒的生物强化,降低植物可食用部位的砷含量,将富硒产业的发展和砷污染治理相结合,为轻中度砷污染土壤的科学利用提供依据。
硒与砷的相互作用较为复杂。在一定条件下,硒能拮抗砷的毒性,砷也能抑制植物对硒的吸收。在水稻中的研究表明,硒能降低砷对水稻的毒害作用和水稻不同部位的砷浓度[2-5]。适宜的硒浓度(如0.1 mg·L−1)可以缓解高砷对烟草的毒害作用,并促进植物生长[6]。在对绿豆的研究中发现,5 μmol·L−1硒处理可缓解砷对绿豆细胞膜、叶绿体和细胞活力的毒害作用,硒能降低砷引起的氧化损伤,提高了相关保护酶和非酶类抗氧化物质水平[7]。胡莹等[8]在水稻中的研究发现,As(Ⅲ)或As(Ⅴ)处理显著降低了水稻茎叶对硒的吸收积累。另一方面,硒和砷也可能表现出协同作用。Ebbs和Weinstein [9]认为,砷促进了大麦对硒的吸收和转运作用,并且会降低大麦体内挥发性硒化物的产生。Srivastava等[10]在蜈蚣草中的研究发现5 μmol·L−1的硒可促进蜈蚣草对砷的吸收。可见,硒和砷的交互作用不仅受硒和砷的浓度影响,在不同作物种类或者同一作物的不同部位的表现不尽相同。
白菜是一种富硒能力较强的芸薹属蔬菜,在中国各地被广泛种植,深受人们喜爱。本研究以白菜为供试作物,通过土壤盆栽试验研究硒-砷交互作用对白菜砷、硒含量及形态组成的影响,为富硒蔬菜的安全生产提供科学依据。
硒-砷交互作用对白菜砷和硒吸收转运的影响
Interactions between arsenic and selenium uptake and translocation in Chinese cabbage
-
摘要: 本文为研究硒和砷的交互作用对白菜砷和硒吸收转运的影响,采用土壤盆栽试验,研究无添加砷、轻度砷污染(100 mg·kg−1)和中度砷污染(200 mg·kg−1)条件下,施硒(0、2.5、5.0、7.5 mg·kg−1)对白菜不同部位砷、硒含量及地上部位砷、硒形态组成的影响。结果表明,无添加砷条件下,2.5 mg·kg−1和7.5 mg·kg−1 硒处理显著降低地下部位砷含量;轻度砷污染条件下,7.5 mg·kg−1 硒处理显著降低地下部位砷含量,5.0 mg·kg−1和7.5 mg·kg−1 硒处理促进砷向地上部位转运,显著提高地上部位砷含量;中度砷污染条件下,5.0 mg·kg−1和7.5 mg·kg−1 硒处理抑制砷向地上部位转运,显著提高地下部位砷含量。硒处理浓度为2.5 mg·kg−1时,100 mg·kg−1和200 mg·kg−1 砷处理抑制硒向地上部位转运,显著降低地上部位硒含量;硒处理浓度为5.0 mg·kg−1时,100 mg·kg−1 砷处理促进硒向地上部位转运,显著降低地下部位硒含量;硒处理浓度为7.5 mg·kg−1时,200 mg·kg−1 砷处理促进根系对硒的吸收,地上、地下部位硒含量显著提高。外源砷的添加促进As(Ⅴ)还原为As(Ⅲ);外源硒对白菜地上部分砷形态组成没有显著影响。外源硒的添加促进了Se(Ⅳ)向Se(Ⅵ)及有机硒转化。外源砷或硒处理均能提高根际土壤pH。中度砷污染条件下,7.5 mg·kg−1 硒处理显著降低根际土壤有效态砷含量。硒对白菜吸收转运砷的影响在不同砷污染条件下存在差异,轻度砷污染条件下,较高浓度硒处理提高白菜可食用部位砷污染风险,建议土壤施硒以低浓度为宜(<2.5 mg·kg−1)。Abstract: Interactive effects between arsenic (As) and selenium (Se) on uptake and translocation of As and Se in Chinese cabbage (Brassica pekinensis L.) were investigated in pot experiment. Three levels of As additions (0, 100 mg·kg−1 and 200 mg·kg−1) and 4 Se levels (0, 2.5, 5.0 mg·kg−1 and 7.5 mg·kg−1) for each As addition were designed, and As contents, Se contents, As speciation and Se speciation in Chinese cabbage were determined. The results showed that 2.5 mg·kg−1 and 7.5 mg·kg−1 Se treatments significantly reduced As content in underground part under the condition of without As addition. Under mild As pollution condition (100 mg·kg−1), 7.5 mg·kg−1 Se treatments decreased As content in underground part, and 5.0 mg·kg−1 and 7.5 mg·kg−1 Se treatments promoted the transport of As from root to aboveground, thus leading to the significantly increased of As in aboveground part. Under moderate As pollution condition (200 mg·kg−1), 5.0 mg·kg−1 and 7.5 mg·kg−1 Se treatments significantly increased As content in underground part and inhibited the transport of As from root to aboveground. 100 mg·kg−1 and 200 mg·kg−1 As treatments inhibited the transport of Se from root to aboveground, and significantly reduced Se content in aboveground part at 2.5 mg·kg−1 Se level. While 100 mg·kg−1 As treatment promoted the transport of Se from root to aboveground, and significantly reduced Se content in the underground part at 5.0 mg·kg−1 Se level. When the application of Se at 7.5 mg·kg−1, 200 mg·kg−1 As treatment significantly increased Se content in the aboveground and underground parts. The addition of exogenous As promoted the reduction of As(Ⅴ) to As(Ⅲ), and the exogenous Se had no significant effect on As speciation in the aboveground part. The addition of exogenous Se promoted the transformation of Se(Ⅳ) to Se(Ⅵ) and organic Se. Both exogenous As and Se addition could increase the pH of rhizosphere soil. Under moderate As pollution condition, 7.5 mg·kg−1 Se treatment significantly reduced the content of available As in rhizosphere soil. The effect of Se on the uptake and translocation of As in Chinese cabbage was different under different As pollution conditions. Under mild As pollution condition, higher Se addition could increase the risk of As contamination in edible part, thus the recommended Se in soil was below 2.5 mg·kg−1.
-
Key words:
- selenium /
- arsenic /
- Chinese cabbage /
- translocation /
- speciation
-
表 1 不同处理下白菜地上部分砷、硒形态占总量比例(%)
Table 1. Percentage of main As and Se speciation in aboveground part under different treatments (%)
砷处理
As treatment硒处理
Se treatmentAs (Ⅲ) DMA As(Ⅴ) SeCys2 MSC SeMet Se (Ⅳ) Se (Ⅵ) A0 S0 47.4±3.2 d 0.8±0.3 abcd 42.1±10.7 a ND ND ND 29.2±13.2 a 3.7±1.5 d S1 56.4±9.2 d 1.3±0.6 a 37.7±4.9 a 0.8±0.1 d 3.7±1.2 c 1.0±0.2 b 5.4±3.3 c 13.3±2.8 cd S2 52.7±12.1 d 1.1±0.3 ab 36.3±3.6 a 1.3±0.3 bcd 4.7±1.5 bc 2.0±0.6 a 2.8±1.3 c 31.4±5.5 ab S3 56.0±4.4 d 1.0±0.4 abcd 32.6±7.0 a 1.5±0.3 bcd 4.6±1.2 c 1.9±1.0 a 1.1±0.1 c 34.4±6.4 ab A1 S0 76.1±10.2 bc 0.9±0.1 abcd 17.7±2.5 bc ND ND ND 19.0±3.9 b 3.4±0.4 d S1 83.8±8.5 abc 1.1±0.3 abc 18.0±4.0 bc 1.0±0.1 cd 6.1±1.8 abc 1.0±0.6 b 8.8±2.3 c 15.0±4.2 cd S2 74.5±11.7 c 0.9±0.3 abcd 20.4±7.2 b 1. 3±0.3 bcd 3.9±1.1 c 0.9±0.3 b 2.1±0.6 c 26.7±7.8 ab S3 72.9±10.0 c 0.6±0.2 bcd 12.5±6.8 bc 1.9±0.3 ab 4.8±0.4 bc 1.3±0.2 ab 0.9±0.3 c 36.3±4.1 a A2 S0 90.7±6.3 ab 0.6±0.2 cd 9.7±1.5 c ND ND ND 24.8±4.7 ab 4.4±0.9 d S1 94.5±1.8 a 0.6±0.2 cd 9.4±0.8 c 2.6±0.3 a 4.9±0.7 bc 0.6±0.3 b 3.3±0.3 c 14.8±1.1 cd S2 91.1±1.3 ab 0.5±0.1 d 11.2±2.1 bc 1.6±0.9 bc 7.7±2.8 ab 1.0±0.3 b 0.7±0.4 c 22.8±7.3 bc S3 83.0±6.5 abc 0.5±0.1 d 11.8±1.7 bc 1.7±0.4 bc 7.9±0.5 a 0.8±0.1 b 0.5±0.1 c 30.6±14.4 ab 注(Note):ND表示未检出(ND means not detected), 表中同列数据后不同小写字母表示在0.05水平上存在显著差异(Different small alphabets at the same column represent significant difference at 0.05 level), 下同(The same was applied) 表 2 根际土壤pH及有效态含量
Table 2. pH, As and Se Available contents in rhizosphere soil
砷处理
As treatment硒处理
Se treatmentpH 有效态砷/(mg·kg-1)
Available As砷有效度/%
Availability As有效态硒/(mg·kg-1)
Available Se硒有效度/%
Availability SeA0 S0 5.01±0.09 d 0.40±0.02 d 2.47±0.06 c 0.05±0.004 d 9.67±0.55 d S1 5.22±0.07 c 0.40±0.03 d 2.43±0.12 c 0.42±0.04 c 17.77±1.48 abc S2 5.34±0.09 abc 0.40±0.01 d 2.40±0.10 c 0.77±0.09 b 18.47±2.35 ab S3 5.29±0.08 bc 0.44±0.02 d 2.53±0.25 c 1.12±0.08 a 19.00±0.76 ab A1 S0 5.46±0.05 ab 16.16±0.74 c 15.67±0.78 a 0.05±0.01 d 9.40±1.97 d S1 5.32±0.07 abc 16.49±0.91 c 15.83±0.91 a 0.39±0.06 c 16.27±2.38 bc S2 5.41±0.13 abc 16.89±0.72 c 16.13±0.75 a 0.74±0.05 b 17.47±1.36 abc S3 5.34±0.12 abc 16.67±0.60 c 16.00±0.26 a 1.16±0.04 a 19.30±1.31 a A2 S0 5.46±0.13 ab 29.50±0.92 a 15.13±0.35 ab 0.05±0.007 d 9.53±1.01 d S1 5.34±0.15 abc 29.09±1.35 a 14.70±0.44 ab 0.37±0.02 c 15.50±0.69 c S2 5.54±0.16 a 28.72±0.38 a 14.70±0.36 ab 0.74±0.03 b 18.03±0.42 abc S3 5.51±0.12 a 25.26±6.14 b 13.33±3.36 b 1.15±0.14 a 19.60±2.17 a 注(Note):砷有效度(Availability As)=有效态砷(Available As)×100/总砷(Total As); 硒有效度(Availability Se)=有效态硒(Available Se)×100/总硒(Total Se) -
[1] 韩丹. 硒在烤烟中的累积、形态转化及缓解砷毒害的机理研究[D]. 武汉: 华中农业大学, 2015: 9-10. HAN D. The accumulation and species of selenium in Flue-Cured tobacco and the mechanisms of selenium alleviating arsenic toxicity[D]. Wuhan: Huazhong Agricultural University, 2015: 9-10(in Chinese).
[2] KAUR S, SINGH D, SINGH K. Effect of selenium application on arsenic uptake in rice (Oryza sativa L.) [J]. Environmental Monitoring and Assessment, 2017, 189(9): 1-8. [3] 徐向华, 刘传平, 唐新莲, 等. 叶面喷施硒硅复合溶胶抑制水稻砷积累效应研究 [J]. 生态环境学报, 2014, 23(6): 1064-1069. doi: 10.3969/j.issn.1674-5906.2014.06.025 XU X H, LIU C P, TANG X L, et al. Foliar application of selenium-silicon sol reduced arsenic accumulation in rice [J]. Ecology and Environmental Sciences, 2014, 23(6): 1064-1069(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.06.025
[4] PANDEY C, GUPTA M. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay [J]. Journal of Hazardous Materials, 2015, 287(apra28): 384-391. [5] PANDEY C, RAGHURAM B, SINHA A K, et al. miRNA plays a role in the antagonistic effect of selenium on arsenic stress in rice seedlings [J]. Metallomics, 2015, 7(5): 857-866. doi: 10.1039/C5MT00013K [6] HAN D, XIONG S, TU S, et al. Interactive effects of selenium and arsenic on growth, antioxidant system, arsenic and selenium species of Nicotiana tabacum L [J]. Environmental and Experimental Botany, 2015, 117: 12-19. doi: 10.1016/j.envexpbot.2015.04.008 [7] MALIK J A, GOEL S, KAUR N, et al. Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms [J]. Environmental and Experimental Botany, 2012, 77: 242-248. doi: 10.1016/j.envexpbot.2011.12.001 [8] 胡莹, 黄益宗, 刘云霞. 砷-硒交互作用对水稻吸收转运砷和硒的影响 [J]. 环境化学, 2013, 32(6): 952-958. doi: 10.7524/j.issn.0254-6108.2013.06.005 HU Y, HUANG Y, LIU Y X. Interactions between arsenic and selenium uptake and translocation in rice (Oryza sativa L.) seedlings [J]. Environmental Chemistry, 2013, 32(6): 952-958(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.06.005
[9] EBBS S, WEINSTEIN L. Alteration of selenium transport and volatilization in barley (Hordeum vulgare) by arsenic [J]. Journal of Plant Physiology, 2001, 158: 1231-1233. doi: 10.1078/0176-1617-00440 [10] SRIVASTAVA M, MA L Q, RATHINASABAPATHI B, et al. Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L [J]. Bioresource Technology, 2009, 100: 1115-1121. doi: 10.1016/j.biortech.2008.08.026 [11] ZHAO F J, MA J F, MEHARG A A, et al. Arsenic uptake and metabolism in plants [J]. The New Phytologist, 2009, 181(4): 777-794. doi: 10.1111/j.1469-8137.2008.02716.x [12] 殷行行, 郑向群, 丁永祯, 等. 亚硒酸盐对旱稻吸收、转运砷及其氧化性胁迫的影响研究 [J]. 农业环境科学学报, 2017, 36(5): 817-825. doi: 10.11654/jaes.2017-0285 YIN X X, ZHENG X Q, DING Y Z, et al. Effect of selenite on arsenic uptake, translocation, and oxidative stress in upland rice [J]. Journal of Agro-Environment Science, 2017, 36(5): 817-825(in Chinese). doi: 10.11654/jaes.2017-0285
[13] 赵秀峰, 张强, 程滨, 等. 硒对砷胁迫下小白菜生理特性及砷吸收的影响 [J]. 环境科学学报, 2017, 37(9): 3583-3589. ZHAO X F, ZHANG Q, CHENG B, et al. Effects of selenium on the physiological characteristics and As uptake of pak choi under As stress [J]. Acta Scientiae Circumstantiae, 2017, 37(9): 3583-3589(in Chinese).
[14] 汪京超, 李楠楠, 谢德体, 等. 砷在植物体内的吸收和代谢机制研究进展 [J]. 植物学报, 2015, 50(4): 516-526. doi: 10.11983/CBB14209 WANG J C, LI N N, XIE D T, et al. Mechanisms of arsenic uptake and metabolism in plants [J]. Bulletin of Botany, 2015, 50(4): 516-526(in Chinese). doi: 10.11983/CBB14209
[15] 陈松灿, 孙国新, 陈正, 等. 植物硒生理及与重金属交互的研究进展 [J]. 植物生理学报, 2014, 50(5): 612-624. CHEN S C, SUN G X, CHEN Z, et al. Progresses on selenium metabolism and interaction with heavy metals in higher plants [J]. Plant Physiology Journal, 2014, 50(5): 612-624(in Chinese).
[16] FENG R W, WEI C Y, TU S X, et al. Interactive effects of selenium and arsenic on their uptake by Pteris vittata L. under hydroponic conditions [J]. Environmental and Experimental Botany, 2009, 65: 363-368. doi: 10.1016/j.envexpbot.2008.11.013 [17] 刘艳丽, 徐莹, 杜克兵, 等. 无机砷在植物体内的吸收和代谢机制 [J]. 应用生态学报, 2012, 23(3): 842-848. LIU Y L, XU Y, DU K B, et al. Absorption and metabolism mechanisms of inorganic arsenic in plants: A review [J]. Chinese Journal of Applied Ecology, 2012, 23(3): 842-848(in Chinese).
[18] HONDAL R J, MARINO S M, GLADYSHEV V N. Selenocysteine in thiol/disulfide-like exchange reactions [J]. Antioxidants & Redox Signaling, 2013, 18(13): 1675-1689. [19] EL MEHDAWI A F, PILON-SMITS E A H. Ecological aspects of plant selenium hyperaccumulation [J]. Plant Biology (Stuttgart, Germany), 2012, 14(1): 1-10. doi: 10.1111/j.1438-8677.2011.00535.x [20] 郭璐, 满楠, 梁东丽, 等. 小白菜对外源硒酸盐和亚硒酸盐动态吸收的差异及其机制研究 [J]. 环境科学, 2013, 34(8): 3272-3279. GUO L, MAN N, LIANG D L, et al. Differences of selenium uptake pattern of pakchoi and the possible mechanism when amended with selenate and selenite [J]. Environmental Science, 2013, 34(8): 3272-3279(in Chinese).