-
2019年,我国城市生活垃圾的清运量已达2.4亿吨[1];在垃圾分类收运、处理处置与资源化过程中,均会产生特征性的二次污染物——渗滤液。渗滤液是指固体废物在填埋、堆存或受挤压条件下,伴随生物化学等作用下产生的一种液相污染物[2]。我国的渗滤液产率通常为每吨垃圾产生0.2—0.33 t渗滤液[3]。渗滤液含有大量的可生物降解及难生物降解有机物质(例如,腐殖质、微量有机污染物)、氨氮、重金属及无机盐。
渗滤液中的溶解性有机物(dissolved organic matters, DOM)是其主要的污染物组分。DOM成分复杂,可能包含了数万种有机物,且存在着因相互作用形成的“超分子”结构。因其复杂性,DOM显著地影响着各类渗滤液处理工艺的运行与处理效果。据此,本文总结了渗滤液DOM表征方法的技术特点,及其在渗滤液处理工艺中的应用,以期为DOM性质解构、污染与环境安全控制发展提供新思路。
渗滤液溶解性有机物解析及其转化研究前瞻
Property and transformation of DOM in solid waste leachate
-
摘要:
渗滤液中的溶解性有机物(dissolved organic matters, DOM)是其污染控制的关键对象,并影响着渗滤液处理工艺的效能。渗滤液DOM的解析方法经历了20多年的发展历程,并用于认识渗滤液各类复杂处理工艺流程中的DOM转化规律。本综述分别从主体DOM解析与微量有机污染物识别两方面,总结了渗滤液DOM解构方法学的发展历程;进一步地,评述了研究渗滤液各类处理流程中DOM转化规律的研究进展。据此,本文展望了渗滤液DOM解析方法的未来发展方向,并提出了现有渗滤液处理过程中微量有机污染物转化研究存在的问题。
Abstract:Dissolved organic matters (DOM) are the key fraction of waste leachate to be treated, and affect various treatment technologies inversely. The methodologies of leachate DOM characterization have made a great progress to disclose the DOM transformation during leachate treatment processes in the two decades. This review summarizes development of DOM characterization from the perspectives of bulk DOM and micropollutants. Additionally, the application of these characterization methods is critically reviewed. It mentions that future of leachate DOM characterization and micropollutants transformation during treatment processes.
-
Key words:
- solid waste /
- characterization /
- material flow analysis /
- high resolution mass spectrum
-
-
[1] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020. National Bureau of Statistics of China. China statistical yearbook[M]. China Statistics Press, 2020(in Chinese).
[2] RENOU S, GIVAUDAN J G, POULAIN S, et al. Landfill leachate treatment: Review and opportunity [J]. Journal of Hazardous Materials, 2008, 150(3): 468-493. doi: 10.1016/j.jhazmat.2007.09.077 [3] YANG N, DAMGAARD A, KJELDSEN P, et al. Quantification of regional leachate variance from municipal solid waste landfills in China [J]. Waste Management, 2015, 46: 362-372. doi: 10.1016/j.wasman.2015.09.016 [4] HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill [J]. Water Research, 2006, 40(7): 1465-1473. doi: 10.1016/j.watres.2006.01.048 [5] LU F, CHANG C H, LEE D J, et al. Dissolved organic matter with multi-peak fluorophores in landfill leachate [J]. Chemosphere, 2009, 74(4): 575-582. doi: 10.1016/j.chemosphere.2008.09.060 [6] QIU J J, LÜ F, ZHANG H, et al. UPLC Orbitrap MS/MS-based fingerprints of dissolved organic matter in waste leachate driven by waste age [J]. Journal of Hazardous Materials, 2020, 383: 121205. doi: 10.1016/j.jhazmat.2019.121205 [7] ZHENG Z, HE P J, SHAO L M, et al. Phthalic acid esters in dissolved fractions of landfill leachates [J]. Water Research, 2007, 41(20): 4696-4702. doi: 10.1016/j.watres.2007.06.040 [8] LANG J R, ALLRED B M, FIELD J A, et al. National estimate of per- and polyfluoroalkyl substance (PFAS) Release to U. S. municipal landfill leachate [J]. Environmental Science & Technology, 2017, 51(4): 2197-205. [9] MIYAKE Y, TOKUMURA M, WANG Q, et al. Identification of novel phosphorus-based flame retardants in curtains purchased in Japan using orbitrap mass spectrometry [J]. Environmental Science & Technology Letters, 2018, 5(7): 448-455. [10] LIU A F, SHI J B, QU G B, et al. Identification of emerging brominated chemicals as the transformation products of tetrabromobisphenol A (TBBPA) derivatives in soil [J]. Environmental Science & Technology, 2017, 51(10): 5434-5444. [11] ALYGIZAKIS N, SAMANIPOUR S, HOLLENDER J, et al. Exploring the potential of a global emerging contaminant early warning network through the use of retrospective suspect screening with high-resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(9): 5135-5144. [12] GAGO-FERRERO P, KRETTEK A, FISCHER S, et al. Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants [J]. Environmental Science & Technology, 2018, 52(12): 6881-6894. [13] RAPP-WRIGHT H, MCENEFF G, MURPHY B, et al. Suspect screening and quantification of trace organic explosives in wastewater using solid phase extraction and liquid chromatography-high resolution accurate mass spectrometry [J]. Journal of Hazardous Materials, 2017, 329: 11-21. doi: 10.1016/j.jhazmat.2017.01.008 [14] TSUGAWA H, CAJKA T, KIND T, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis [J]. Nature Methods, 2015, 12(6): 523-526. doi: 10.1038/nmeth.3393 [15] SAMANIPOUR S, REID M J, BÆK K, et al. Combining a deconvolution and a universal library search algorithm for the nontarget analysis of data-independent acquisition mode liquid Chromatography−High-resolution mass spectrometry results [J]. Environmental Science & Technology, 2018, 52(8): 4694-4701. [16] VEENAAS C, BIGNERT A, LILJELIND P, et al. Nontarget screening and time-trend analysis of sewage sludge contaminants via two-dimensional gas chromatography-high resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(14): 7813-7822. [17] PETER K T, TIAN Z Y, WU C, et al. Using high-resolution mass spectrometry to identify organic contaminants linked to urban stormwater mortality syndrome in Coho Salmon [J]. Environmental Science & Technology, 2018, 52(18): 10317-10327. [18] RATHGEB A, CAUSON T, KRACHLER R, et al. From the peat bog to the estuarine mixing zone: Common features and variances in riverine dissolved organic matter determined by non-targeted analysis [J]. Marine Chemistry, 2017, 194: 158-167. doi: 10.1016/j.marchem.2017.06.012 [19] van ZOMEREN A, COMANS R N J. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure [J]. Environmental Science & Technology, 2007, 41(19): 6755-6761. [20] LABANOWSKI J, PALLIER V, FEUILLADE-CATHALIFAUD G. Study of organic matter during coagulation and electrocoagulation processes: Application to a stabilized landfill leachate [J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 166-172. [21] ZHANG H, CHANG C H, LÜ F, et al. Estrogenic activity of fractionate landfill leachate [J]. Science of the Total Environment, 2009, 407(2): 879-886. doi: 10.1016/j.scitotenv.2008.09.055 [22] XIAO K K, ABBT-BRAUN G, HORN H. Changes in the characteristics of dissolved organic matter during sludge treatment: A critical review [J]. Water Research, 2020, 187: 116441. doi: 10.1016/j.watres.2020.116441 [23] SPRANGER T, PINXTEREN D V, REEMTSMA T, et al. 2D liquid chromatographic fractionation with ultra-high resolution MS analysis resolves a vast molecular diversity of tropospheric particle organics [J]. Environmental Science & Technology, 2019, 53(19): 11353-11363. [24] WEISHAAR J L, AIKEN G R, BERGAMASCHI B A, et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon [J]. Environmental Science & Technology, 2003, 37(20): 4702-4708. [25] MATTHEWS B J H, JONES A C, THEODOROU N K, et al. Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs [J]. Marine Chemistry, 1996, 55(3-4): 317-32. doi: 10.1016/S0304-4203(96)00039-4 [26] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence Excitation−Emission matrix regional integration to quantify spectra for dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [27] WU J, ZHANG H, HE P J, et al. Insight into the heavy metal binding potential of dissolved organic matter in MSW leachate using EEM quenching combined with PARAFAC analysis [J]. Water Research, 2011, 45(4): 1711-1719. doi: 10.1016/j.watres.2010.11.022 [28] HELMS J R, STUBBINS A, RITCHIE J D, et al. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter [J]. Limnology and Oceanography, 2008, 53(3): 955-969. doi: 10.4319/lo.2008.53.3.0955 [29] KELLERMAN A M, KOTHAWALA D N, DITTMAR T, et al. Persistence of dissolved organic matter in lakes related to its molecular characteristics [J]. Nature Geoscience, 2015, 8(6): 454-457. doi: 10.1038/ngeo2440 [30] SCHMIDT M W, TORN M S, ABIVEN S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature, 2011, 478(7367): 49-56. doi: 10.1038/nature10386 [31] SMITH D F, PODGORSKI D C, RODGERS R P, et al. 21 Tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures [J]. Analytical Chemistry, 2018, 90(3): 2041-2047. doi: 10.1021/acs.analchem.7b04159 [32] HAWKES J A, DITTMAR T, PATRIARCA C, et al. Evaluation of the Orbitrap mass spectrometer for the molecular fingerprinting analysis of natural dissolved organic matter [J]. Analytical Chemistry, 2016, 88(15): 7698-7704. doi: 10.1021/acs.analchem.6b01624 [33] PATRIARCA C, BERGQUIST J, SJÖBERG P J R, et al. Online HPLC-ESI-HRMS method for the analysis and comparison of different dissolved organic matter samples [J]. Environmental Science & Technology, 2018, 52(4): 2091-2099. [34] STENSON A C, MARSHALL A G, COOPER W T. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra [J]. Analytical Chemistry, 2003, 75(6): 1275-1284. doi: 10.1021/ac026106p [35] KOCH B P, DITTMAR T, WITT M, et al. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter [J]. Analytical Chemistry, 2007, 79(4): 1758-1763. doi: 10.1021/ac061949s [36] SUTTON R, SPOSITO G. Molecular structure in soil humic substances: the new view [J]. Environmental Science & Technology, 2005, 39(23): 9009-9015. [37] DEVARAJAN D, LIANG L Y, GU B H, et al. Molecular dynamics simulation of the structures, dynamics, and aggregation of dissolved organic matter [J]. Environmental Science & Technology, 2020, 54(21): 13527-13537. [38] KRUVE A. Strategies for drawing quantitative conclusions from nontargeted liquid chromatography-high-resolution mass spectrometry analysis [J]. Analytical Chemistry, 2020, 92(7): 4691-4699. doi: 10.1021/acs.analchem.9b03481 [39] HITES R A, JOBST K J. Is nontargeted screening reproducible? [J]. Environmental Science & Technology, 2018, 52(21): 11975-11976. [40] YU Z F, HE P J, SHAO L M, et al. Co-occurrence of mobile genetic elements and antibiotic resistance genes in municipal solid waste landfill leachates: A preliminary insight into the role of landfill age [J]. Water Research, 2016, 106: 583-592. doi: 10.1016/j.watres.2016.10.042 [41] HE P J, CHEN L Y, SHAO L M, et al. Municipal solid waste (MSW) landfill: A source of microplastics?-Evidence of microplastics in landfill leachate [J]. Water Research, 2019, 159: 38-45. doi: 10.1016/j.watres.2019.04.060 [42] OMAN C B, JUNESTEDT C. Chemical characterization of landfill leachates--400 parameters and compounds [J]. Waste Management, 2008, 28(10): 1876-1891. doi: 10.1016/j.wasman.2007.06.018 [43] HE P, HUANG J, YU Z, et al. Antibiotic resistance contamination in four Italian municipal solid waste landfills sites spanning 34 years [J]. Chemosphere, 2021, 266: 129182. doi: 10.1016/j.chemosphere.2020.129182 [44] 郑仲, 何品晶, 章骅, 等. 城市生活垃圾中邻苯二甲酸酯的源分布特征 [J]. 同济大学学报(自然科学版), 2007, 35(12): 1646-1650. doi: 10.3321/j.issn:0253-374X.2007.12.013 ZHENG Z, HE P J, ZHANG H, et al. Distribution of phthalic acid esters in municipal solid waste [J]. Journal of Tongji University (Natural Science), 2007, 35(12): 1646-1650(in Chinese). doi: 10.3321/j.issn:0253-374X.2007.12.013
[45] DITTMAR T, KOCH B, HERTKORN N, et al. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater [J]. Limnology and Oceanography-Methods, 2008, 6(6): 230-235. doi: 10.4319/lom.2008.6.230 [46] GURTLER B K, VETTER T A, PERDUE E M, et al. Combining reverse osmosis and pulsed electrical current electrodialysis for improved recovery of dissolved organic matter from seawater [J]. Journal of Membrane Science, 2008, 323(2): 328-336. doi: 10.1016/j.memsci.2008.06.025 [47] THURMAN E M, MALCOLM R L. Preparative isolation of aquatic humic substances [J]. Environmental Science & Technology, 1981, 15(4): 463-466. [48] KRUGER B R, DALZELL B J, MINOR E C. Effect of organic matter source and salinity on dissolved organic matter isolation via ultrafiltration and solid phase extraction [J]. Aquatic Sciences, 2011, 73(3): 405-417. doi: 10.1007/s00027-011-0189-4 [49] LI Y, HARIR M, LUCIO M, et al. Proposed guidelines for solid phase extraction of Suwannee River dissolved organic matter [J]. Analytical Chemistry, 2016, 88(13): 6680-6688. doi: 10.1021/acs.analchem.5b04501 [50] GREEN N W, MICHAEL PERDUE E, AIKEN G R, et al. An intercomparison of three methods for the large-scale isolation of oceanic dissolved organic matter [J]. Marine Chemistry, 2014, 161: 14-19. doi: 10.1016/j.marchem.2014.01.012 [51] LI Y, HARIR M, UHL J, et al. How representative are dissolved organic matter (DOM) extracts? A comprehensive study of sorbent selectivity for DOM isolation [J]. Water Research, 2017, 116: 316-323. doi: 10.1016/j.watres.2017.03.038 [52] HOLLENDER J, SCHYMANSKI E L, SINGER H P, et al. Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? [J]. Environmental Science & Technology, 2017, 51(20): 11505-11512. [53] SCHYMANSKI E L, SINGER H P, SLOBODNIK J, et al. Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis [J]. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6237-6255. doi: 10.1007/s00216-015-8681-7 [54] LI H, CAI Y P, GUO Y, et al. MetDIA: targeted metabolite extraction of multiplexed MS/MS spectra generated by data-independent acquisition [J]. Analytical Chemistry, 2016, 88(17): 8757-8764. doi: 10.1021/acs.analchem.6b02122 [55] SILVA L K, HILE G A, CAPELLA K M, et al. Quantification of 19 aldehydes in human serum by headspace SPME/GC/high-resolution mass spectrometry [J]. Environmental Science & Technology, 2018, 52(18): 10571-10579. [56] DROLLETTE B, BRENNEIS R J, PLATA D L. Oligomer-specific, short chain linear alcohol ethoxylate quantification via comprehensive two-dimensional gas chromatography [J]. Environmental Science & Technology Letters, 2018, 5(9): 539-545. [57] 邵立明, 邓樱桃, 仇俊杰, 等. 工程规模长填龄渗滤液膜生物-纳滤组合设施各单元污染物去除效能 [J]. 环境科学, 2021, 42(3): 1469-1476. SHAO L M, DENG Y T, QIU J J, et al. Pollutant removal efficiency of different units along a mature landfill leachate treatment process in a membrane biological reactor-nanofiltration combined facility [J]. Environmental Science, 2021, 42(3): 1469-1476(in Chinese).
[58] QIU J J, LÜ F, ZHANG H, et al. Persistence of native and bio-derived molecules of dissolved organic matters during simultaneous denitrification and methanogenesis for fresh waste leachate [J]. Water Research, 2020, 175: 15705. [59] 何品晶, 徐延春, 吕凡, 等. 芬顿和双氧水紫外处理稳定渗滤液的光谱特征 [J]. 同济大学学报(自然科学版), 2016, 44(2): 249-254. doi: 10.11908/j.issn.0253-374x.2016.02.013 HE P J, XU Y C, LV F, et al. Spectroscopic characteristics of mature leachate during Fenton and H2O2-UV treatment process [J]. Journal of Tongji University(Natural Science), 2016, 44(2): 249-254(in Chinese). doi: 10.11908/j.issn.0253-374x.2016.02.013
[60] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial [J]. Limnology and Oceanography: Methods, 2008, 6(11): 572-579. doi: 10.4319/lom.2008.6.572 [61] YU M D, XI B D, ZHU Z Q, et al. Fate and removal of aromatic organic matter upon a combined leachate treatment process [J]. Chemical Engineering Journal, 2020, 401: 126157. doi: 10.1016/j.cej.2020.126157 [62] HE P J, LIU W Y, QIU J J, et al. Improvement criteria for different advanced technologies towards bio-stabilized leachate based on molecular subcategories of DOM [J]. Journal of Hazardous Materials, 2021, 414: 125463. doi: 10.1016/j.jhazmat.2021.125463 [63] SHAO L M, DENG Y T, QIU J J, et al. DOM chemodiversity pierced performance of each tandem unit along a full-scale “MBR+NF” process for mature landfill leachate treatment [J]. Water Research, 2021, 195: 117000. doi: 10.1016/j.watres.2021.117000 [64] KLEIN S, WORCH E, KNEPPER T P. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany [J]. Environmental Science & Technology, 2015, 49(10): 6070-6076. [65] OTURAN N, van HULLEBUSCH E D, ZHANG H, et al. Occurrence and removal of organic micropollutants in landfill leachates treated by electrochemical advanced oxidation processes [J]. Environmental Science & Technology, 2015, 49(20): 12187-12196. [66] HE P J, ZHENG Z, ZHANG H, et al. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with leachate DOM composition [J]. Science of the Total Environment, 2009, 407(17): 4928-4933. doi: 10.1016/j.scitotenv.2009.05.036 [67] ZHENG Z, ZHANG H, HE P J, et al. Co-removal of phthalic acid esters with dissolved organic matter from landfill leachate by coagulation and flocculation process [J]. Chemosphere, 2009, 75(2): 180-186. doi: 10.1016/j.chemosphere.2008.12.011 [68] WEIZEL A, SCHLUSENER M P, DIERKES G, et al. Analysis of the aerobic biodegradation of glucocorticoids: Elucidation of the kinetics and transformation reactions [J]. Water Research, 2020, 174: 115561. doi: 10.1016/j.watres.2020.115561 [69] GRIBBLE G W. Naturally occurring organohalogen compounds [J]. Accounts of Chemical Research, 1998, 31(3): 141-152. doi: 10.1021/ar9701777 [70] SCHOLLÉE J E, SCHYMANSKI E L, AVAK S E, et al. Prioritizing unknown transformation products from biologically-treated wastewater using high-resolution mass spectrometry, multivariate statistics, and metabolic logic [J]. Analytical Chemistry, 2015, 87(24): 12121-12129. doi: 10.1021/acs.analchem.5b02905