-
随着全球能源需求的扩大,近年来页岩气产业发展迅速[1]。与从多孔岩石中开采天然气的传统方法不同,页岩盆地具有孔隙空间小,连通性差,渗透率低等特点,这阻碍了天然气在岩石中传输[2]。为了释放、采集致密页岩储层中的天然气资源,水平钻井和水力压裂技术起到了关键作用[3],两项技术的进步推动了页岩气开采效率。但是,随之而来的环境问题也逐渐引起公众关注[4]。压裂液作为水力压裂技术的关键物料,能够压裂地层并支撑裂缝,使气体逸出[5]。压裂液主要由水、支撑剂和添加剂三部分组成,其中添加剂中含有大量的化学品[6]。在压裂结束几天后,首先返回到地面的液体通常被称为返排水,返排周期通常为1—2周[7-8]。返排水主要是压裂液和页岩地层水的混合[9]。此外,在井下高温、高压的条件下压裂液中化学物质可能会发生转化[10],故返排水中含有压裂液中化学品及其转化产物。高效处理和再利用压裂废水需要全面了解其中化学污染物的组成。但是,由于化学分析技术的瓶颈,以及返排水的化学成分复杂等原因,相关分析数据仍待补充。这项工作的首要关键是厘清返排水中具有较高的扩散潜力的水力压裂相关化学物质[7]。
PMTs (Persistent, mobile and toxic substances)是指在环境中表现出持久性和弱吸附性的毒害化学物质,故不容易被沉积物、活性炭等天然或人工水处理过程去除,并逐水迁移,在饮用水水源和地下含水层中汇聚,进而影响饮用水和地下水水质,并通过饮水这一暴露途径危害人体健康。因此,PMT成为近年来全球关注的新一类高危化学品[11]。因此探索返排水中的化学污染物对区域水资源的影响,应该重点关注PMTs。研究[4,7]表明,返排水的化学特征受压裂液成分、油气埋深等诸多因素的影响,不同地区的返排水的水化学以及污染物组成特征可能具有较大差异。国外新近研究对压裂返排水特征和成分进行了分析和初探,虽然不能反映我国的真实情况,但是对我国页岩气开发化学污染防控仍具有指导、借鉴意义[12]。综上,本文将梳理相关国内外文献,总结、归纳压裂返排水中主要化学污染物的分布特征,并从中甄别、枚举易对区域饮用水资源和地下饮用水安全构成危害的PMTs。这篇综述将从化学品风险管理的角度出发,为我国页岩气产业实现绿色开发提供相关理论依据。
页岩气开采水力压裂返排水中化学污染物的组成特征
Compositional characteristics of chemical pollutants in flowback water during shale gas hydraulic fracking
-
摘要: 伴随全球页岩气规模化开发,相关的区域环境问题引起了学界和公众的持续关注。页岩气开采与区域水资源息息相关,水力压裂不仅消耗大量水资源,而且产生返排废水,成分复杂,含数以千计的化学物质。因此,有关返排水中有机单体的相关研究越来越受关注。本文系统总结了近年来的相关文献和成果,重点论述了压裂返排水中有机污染物的来源、种类、浓度水平以及可能造成的人体健康危害。另外,针对持久、迁移性和毒性有机污染物 (PMT),这类不易吸附、降解,且可以逐水迁移易在饮用水水源和地下水中累积的化合物,通过甄别、枚举了返排水中已检测出的PMT,并阐述了PMT对区域水资源的潜在危害。最后,鉴于当前我国页岩气开发场地的化学污染相关工作尚处于初步研究阶段,对未来的重要工作进行了展望。Abstract: Accompanied with rapid growth of shale gas industry, associated environmental problems have received continuous attention from the academia and public. Shale gas production is tightly linked to regional water resources. Specifically, shale gas extraction is consuming huge amount of fresh water resources, and the produced wastewater also contain thousands of chemical components. Thus, the relevant studies focusing on organic pollutants in the flowback water are receiving increasing interests. Our study summarizes the information on types, sources, concentration levels and harmful health effects of various organic pollutants introduced during shale gas production. Specially, the known persistent, mobile and toxic compounds (PMT) detected in flowback water, which are less sorptive but persistent, which could accumulate in drinking water resources and groundwater aquifers, were exemplified. Also, the potential impact on the regional drinking water resources and groundwater quality were demonstrated. Lastly, given that chemical pollution associated with shale gas production in China is still in early stage, our study also provided outlook for future studies.
-
Key words:
- flowback water /
- shale gas /
- hydraulic fracturing /
- chemical pollutants
-
表 1 水力压裂作业中压裂液各组分的用途及占比
Table 1. Purposes and proportion of each component of fracturing fluid in hydraulic fracturing operation
添加剂Additives 用途 Purpose 占比 % Fraction 凝胶剂 提高压裂液的粘度,增强砂悬浮,利于支撑剂输送 0.050 交联剂 化学结合单个凝胶聚合物分子维持流体黏度,利于支撑剂输送 0.007 润滑剂 降低流体与管道表面之间的界面张力,在泵送过程中保持层流 0.070 破碎剂 通过逆转交联,降低粘度,提高产气效率,有助于压裂液回收 0.060 pH控制剂 提高交联剂的有效性 0.010 酸 清洁和溶解矿物质,利于岩石造缝 0.150 腐蚀抑制剂 防止酸和盐而对套管的腐蚀 0.002 阻垢剂 防止在管道内形成水垢(矿物)沉积 0.090 铁离子控制剂 防止铁离子沉淀 0.006 黏土稳定剂 防止页岩地层中黏土膨胀 0.120 杀菌剂 消毒抑制压裂液中的细菌 0.060 表面活性剂 控制压裂液的最佳黏度,降低压裂液和页岩之间的界面张力 0.075 表 2 已知的PMTs物质及其添加目的
Table 2. Known PMTs detected and their use type
CAS. 化学品 Chemical 添加目的 Purpose 127-18-4 四氯乙烯(tetrachloroethylene) 不明确 75-35-4 1,1-二氯乙烯(1,1-dichloroethylene) 不明确 108-67-8 1,3,5-三甲苯(1,3,5-trimethylbenzene) 表面活性剂 123-91-1 1,4-二氧六环(1,4-dioxane) 表面活性剂 1634-04-4 甲基叔丁基醚(methyl tert-butyl ether (MTBE)) 凝胶剂 111-96-6 二乙二醇二甲醚(bis(2-methoxyethyl) ether) 泡沫剂 22042-96-2 二乙烯三胺五亚甲基膦酸钠(diethylenetriaminepenta (methylenephosphonic acid) sodium salt (DMPS)) 阻垢剂 -
[1] 张文泉, 侯俊, 尚婷婷. 页岩气开采的环境问题及建议 [J]. 广东化工, 2017, 44(2): 52-53. doi: 10.3969/j.issn.1007-1865.2017.02.026 ZHANG W Q, HOU J, SHANG T T. Environmental problems and suggestions for shale gas mining [J]. Guangdong Chemical Industry, 2017, 44(2): 52-53(in Chinese). doi: 10.3969/j.issn.1007-1865.2017.02.026
[2] KARGBO D M, WILHELM R G, CAMPBELL D J. Natural gas plays in the marcellus shale: Challenges and potential opportunities [J]. Environmental Science & Technology, 2010, 44(15): 5679-5684. [3] CARRERO-PARREÑO A, ONISHI V C, SALCEDO-DÍAZ R, et al. Optimal pretreatment system of flowback water from shale gas production [J]. Industrial & Engineering Chemistry Research, 2017, 56(15): 4386-4398. [4] WANG H, LU L, CHEN X, et al. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States [J]. Water Research, 2019, 164: 114942. doi: 10.1016/j.watres.2019.114942 [5] 孟宣宇. 页岩气开发压裂返排液水质特征及其处理技术研究[D]. 北京: 中国石油大学(北京), 2017. MENG X Y. Study on water quality characteristics and treatment technology of fracturing fluid flowback in shale gas development[D]. Beijing: China University of Petroleum, Beijing, 2017(in Chinese).
[6] 黄靓, 李慧强, 杨平. 页岩气压裂返排液的组成及处理技术[J]. 环境科学与技术, 2016, 39(增刊2): 166-171. HUANG L, LI H Q, YANG P. The components and treatment of shale gas fracturing flowback water[J]. Environmental Science & Technology, 2016, 39(Sup 2): 166-171(in Chinese).
[7] BUTKOVSKYI A, BRUNING H, KOOLS S A E, et al. Organic pollutants in shale gas flowback and produced waters: Identification, potential ecological impact, and implications for treatment strategies [J]. Environmental Science & Technology, 2017, 51(9): 4740-4754. [8] 宋磊, 张晓飞, 王毅琳, 等. 美国页岩气压裂返排液处理技术进展及前景展望 [J]. 环境工程学报, 2014, 8(11): 4721-4725. SONG L, ZHANG X F, WANG Y L, et al. Frac-back water treatment development and perspective in United States [J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 4721-4725(in Chinese).
[9] WANG B, XIONG M, WANG P, et al. Chemical characterization in hydraulic fracturing flowback and produced water (HF-FPW) of shale gas in Sichuan of China [J]. Environ Sci Pollut Res Int, 2020, 27(21): 26532-26542. doi: 10.1007/s11356-020-08670-y [10] YOST E E, STANEK J, DEWOSKIN R S, et al. Overview of chronic oral toxicity values for chemicals present in hydraulic fracturing fluids, flowback, and produced waters [J]. Environmental Science & Technology, 2016, 50(9): 4788-4797. [11] SCHULZE S, ZAHN D, MONTES R, et al. Occurrence of emerging persistent and mobile organic contaminants in European water samples [J]. Water Research, 2019, 153: 80-90. doi: 10.1016/j.watres.2019.01.008 [12] 邱哲. 页岩气开采返排水污染特性与AGS-SBR处理实验研究[D]. 重庆: 重庆大学, 2018. QIU Z. Researches on pollution characteristics and AGS-SBR treatment of flowback water from shale gas extraction[D]. Chongqing: Chongqing University, 2018(in Chinese).
[13] SHI W R, WANG X Z, GUO M Y, et al. Water use for shale gas development in China's Fuling shale gas field [J]. Journal of Cleaner Production, 2020, 256: 120680. doi: 10.1016/j.jclepro.2020.120680 [14] SOVACOOL B K. Cornucopia or curse?Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking) [J]. Renewable and Sustainable Energy Reviews, 2014, 37: 249-264. doi: 10.1016/j.rser.2014.04.068 [15] WANG Q, CHEN X, JHA A N, et al. Natural gas from shale formation - The evolution, evidences and challenges of shale gas revolution in United States [J]. Renewable and Sustainable Energy Reviews, 2014, 30: 1-28. doi: 10.1016/j.rser.2013.08.065 [16] BLYTHE K, JEFFRIES R, TRAVERS M. An international perspective of challenges and constraints in shale gas extraction[M]//Environmental and Health Issues in Unconventional Oil and Gas Development. Amsterdam: Elsevier, 2016: 225-248. [17] 秦浩, 陈星, 许钦. 页岩气开发过程中的水资源水环境风险分析 [J]. 水利经济, 2019, 37(3): 62-66,87. doi: 10.3880/j.issn.1003-9511.2019.03.011 QIN H, CHEN X, XU Q. Risk analysis and evaluation of water resources and water environment inexploitation process of shale gas [J]. Journal of Economics of Water Resources, 2019, 37(3): 62-66,87(in Chinese). doi: 10.3880/j.issn.1003-9511.2019.03.011
[18] YU M J, WEINTHAL E, PATIÑO-ECHEVERRI D, et al. Water availability for shale gas development in Sichuan basin, China [J]. Environmental Science & Technology, 2016, 50(6): 2837-2845. [19] SMALL M J, STERN P C, BOMBERG E, et al. Risks and risk governance in unconventional shale gas development [J]. Environmental Science & Technology, 2014, 48(15): 8289-8297. [20] BRANTLEY S L, YOXTHEIMER D, ARJMAND S, et al. Water resource impacts during unconventional shale gas development: The Pennsylvania experience [J]. International Journal of Coal Geology, 2014, 126: 140-156. doi: 10.1016/j.coal.2013.12.017 [21] DARRAH T H, VENGOSH A, JACKSON R B, et al. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the Marcellus and Barnett Shales [J]. PNAS, 2014, 111(39): 14076-14081. doi: 10.1073/pnas.1322107111 [22] WARNER N R, CHRISTIE C A, JACKSON R B, et al. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania [J]. Environmental Science & Technology, 2013, 47(20): 11849-11857. [23] 王丹, 何敏. 页岩气勘探开发对水环境的影响及建议 [J]. 环境科学导刊, 2016, 35(6): 103-107. doi: 10.3969/j.issn.1673-9655.2016.06.024 WANG D, HE M. Impacts and suggestions of shale gas exploration and development on water [J]. Environmental Science Survey, 2016, 35(6): 103-107(in Chinese). doi: 10.3969/j.issn.1673-9655.2016.06.024
[24] FERRER I, THURMAN E M. Chemical constituents and analytical approaches for hydraulic fracturing waters [J]. Trends in Environmental Analytical Chemistry, 2015, 5: 18-25. doi: 10.1016/j.teac.2015.01.003 [25] 吴青芸, 郑猛, 胡云霞. 页岩气开采的水污染问题及其综合治理技术 [J]. 科技导报, 2014, 32(13): 74-83. doi: 10.3981/j.issn.1000-7857.2014.13.013 WU Q Y, ZHENG M, HU Y X. Shale gas produced water contamination and its comprehensive treatment [J]. Science & Technology Review, 2014, 32(13): 74-83(in Chinese). doi: 10.3981/j.issn.1000-7857.2014.13.013
[26] LUEK J L, GONSIOR M. Organic compounds in hydraulic fracturing fluids and wastewaters: A review [J]. Water Research, 2017, 123: 536-548. doi: 10.1016/j.watres.2017.07.012 [27] HE Y H, FLYNN S L, FOLKERTS E J, et al. Chemical and toxicological characterizations of hydraulic fracturing flowback and produced water [J]. Water Research, 2017, 114: 78-87. doi: 10.1016/j.watres.2017.02.027 [28] PIOTROWSKI P, WEGGLER B A, YOXTHEIMER D A, et al. Elucidating environmental fingerprinting mechanisms of unconventional gas development through hydrocarbon analysis [J]. Analytical Chemistry, 2018, 90(8): 5466-5473. doi: 10.1021/acs.analchem.8b00822 [29] HOELZER K, SUMNER A J, KARATUM O, et al. Indications of transformation products from hydraulic fracturing additives in shale-gas wastewater [J]. Environmental Science & Technology, 2016, 50(15): 8036-8048. [30] STRONG L C, GOULD T, KASINKAS L, et al. Biodegradation in waters from hydraulic fracturing: Chemistry, microbiology, and engineering [J]. Journal of Environmental Engineering, 2014, 140(5): B4013001. doi: 10.1061/(asce)ee.1943-7870.0000792 [31] ABUALFARAJ N, GURIAN P L, OLSON M S. Characterization of Marcellus shale flowback water [J]. Environmental Engineering Science, 2014, 31(9): 514-524. doi: 10.1089/ees.2014.0001 [32] ZIEMKIEWICZ P F, THOMAS H Y. Evolution of water chemistry during Marcellus Shale gas development: A case study in West Virginia [J]. Chemosphere, 2015, 134: 224-231. doi: 10.1016/j.chemosphere.2015.04.040 [33] LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment [J]. Science of the Total Environment, 2015, 512/513: 637-644. doi: 10.1016/j.scitotenv.2015.01.043 [34] OETJEN K, THOMAS L. Volatile and semi-volatile organic compound patterns in flowback waters from fracturing sites within the Marcellus Shale [J]. Environmental Earth Sciences, 2016, 75(12): 1-10. [35] HE Y H, SUN C X, ZHANG Y F, et al. Developmental toxicity of the organic fraction from hydraulic fracturing flowback and produced waters to early life stages of zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2018, 52(6): 3820-3830. [36] MAGUIRE-BOYLE S J, BARRON A R. Organic compounds in produced waters from shale gas wells [J]. Environmental Science. Processes & Impacts, 2014, 16(10): 2237-2248. [37] LUEK J L, SCHMITT-KOPPLIN P, MOUSER P J, et al. Halogenated organic compounds identified in hydraulic fracturing wastewaters using ultrahigh resolution mass spectrometry [J]. Environmental Science & Technology, 2017, 51(10): 5377-5385. [38] ZHONG C, LI J Y, FLYNN S L, et al. Temporal changes in microbial community composition and geochemistry in flowback and produced water from the duvernay formation [J]. ACS Earth and Space Chemistry, 2019, 3(6): 1047-1057. doi: 10.1021/acsearthspacechem.9b00037 [39] OETJEN K, CHAN K E, GULMARK K, et al. Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse [J]. Science of the Total Environment, 2018, 619/620: 654-664. doi: 10.1016/j.scitotenv.2017.11.078 [40] THURMAN E M, FERRER I, BLOTEVOGEL J, et al. Analysis of hydraulic fracturing flowback and produced waters using accurate mass: Identification of ethoxylated surfactants [J]. Analytical Chemistry, 2014, 86(19): 9653-9661. doi: 10.1021/ac502163k [41] OREM W, TATU C L, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale [J]. International Journal of Coal Geology, 2014, 126: 20-31. doi: 10.1016/j.coal.2014.01.003 [42] THACKER J, CARLTON D J, HILDENBRAND Z, et al. Chemical analysis of wastewater from unconventional drilling operations [J]. Water, 2015, 7(12): 1568-1579. doi: 10.3390/w7041568 [43] FERRER I, THURMAN E M. Analysis of hydraulic fracturing additives by LC/Q-TOF-MS [J]. Analytical and Bioanalytical Chemistry, 2015, 407(21): 6417-6428. doi: 10.1007/s00216-015-8780-5 [44] WOLFORD R. Characterization of organics in marcellus shale flowback and produced waters [D]. Pennsylvania: Pennsylvania State University, 2011. [45] STRINGFELLOW W T, DOMEN J K, CAMARILLO M K, et al. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing [J]. Journal of Hazardous Materials, 2014, 275: 37-54. doi: 10.1016/j.jhazmat.2014.04.040 [46] CLUFF M A, HARTSOCK A, MACRAE J D, et al. Temporal changes in microbial ecology and geochemistry in produced water from hydraulically fractured Marcellus shale gas wells [J]. Environmental Science & Technology, 2014, 48(11): 6508-6517. [47] MOHAN A M, BIBBY K J, LIPUS D, et al. The functional potential of microbial communities in hydraulic fracturing source water and produced water from natural gas extraction characterized by metagenomic sequencing [J]. PLoS One, 2014, 9(10): e107682. doi: 10.1371/journal.pone.0107682 [48] MURALI MOHAN A, HARTSOCK A, BIBBY K J, et al. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction [J]. Environmental Science & Technology, 2013, 47(22): 13141-13150. [49] SUMNER A, PLATA D L. Halogenation chemistry of hydraulic fracturing additives under highly saline simulated subsurface conditions [J]. Environmental Science & Technology, 2018, 52(16): 9097-9107. [50] EVANS M, SUMNER A J, DALY R A, et al. Hydraulically fractured natural-gas well microbial communities contain genomic halogenation and dehalogenation potential [J]. Environmental Science & Technology Letters, 2019, 6(10): 585-591. [51] VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States [J]. Environmental Science & Technology, 2014, 48(15): 8334-8348. [52] KIM S, OMUR-OZBEK P, CARLSON K. Characterization of organic matter in water from oil and gas wells hydraulically fractured with recycled water [J]. Journal of Hazardous Materials, 2020, 397: 120551. doi: 10.1016/j.jhazmat.2019.04.034 [53] SHIH J S, SAIERS J E, ANISFELD S C, et al. Characterization and analysis of liquid waste from Marcellus shale gas development [J]. Environmental Science & Technology, 2015, 49(16): 9557-9565. [54] SUN Y, WU M H, TONG T Z, et al. Organic compounds in Weiyuan shale gas produced water: Identification, detection and rejection by ultrafiltration-reverse osmosis processes [J]. Chemical Engineering Journal, 2021,412: 128699. [55] SY/T 6596-2004, 气田水回注方法[S]. [56] Regnery J, Coday B D, Riley S M, et al. Solid-phase extraction followed by gas chromatography-mass spectrometry for the quantitative analysis of semi-volatile hydrocarbons in hydraulic fracturing wastewaters [J]. Analytical Methods, 2016, 8(9): 68. [57] BEAN J, BHANDARI S, BILOTTO A, et al. Formation of particulate matter from the oxidation of evaporated hydraulic fracturing wastewater [J]. Environmental Science & Technology, 2018, 52(8): 4960-4968. [58] SANTOS I, HILDENBRAND Z L, SCHUG K A. A review of analytical methods for characterizing the potential environmental impacts of unconventional oil and gas development [J]. Analytical Chemistry, 2019, 91(1): 689-703. doi: 10.1021/acs.analchem.8b04750 [59] AYANDA O S, OLUTONA G O, OLUMAYEDE E G, et al. Phenols, flame retardants and phthalates in water and wastewater – a global problem [J]. Water Science and Technology, 2016, 74(5): 1025-1038. doi: 10.2166/wst.2016.314 [60] ELSNER M, HOELZER K. Quantitative survey and structural classification of hydraulic fracturing chemicals reported in unconventional gas production [J]. Environmental Science & Technology, 2016, 50(7): 3290-3314. [61] KAHRILAS G A, BLOTEVOGEL J, STEWART P S, et al. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity [J]. Environmental Science & Technology, 2015, 49(1): 16-32. [62] U. S. Environmental Protection Agency. Toxic and priority pollutants under the clean water act[EB/OL]. [2021-5-28].https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act . [63] BLEWETT T A, DELOMPRÉ P L M, HE Y H, et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna [J]. Environmental Science & Technology, 2017, 51(5): 3032-3039. [64] HULL N M, ROSENBLUM J S, ROBERTSON C E, et al. Succession of toxicity and microbiota in hydraulic fracturing flowback and produced water in the Denver-Julesburg Basin [J]. Science of the Total Environment, 2018, 644: 183-192. doi: 10.1016/j.scitotenv.2018.06.067 [65] 黄靓, 李慧强, 杨平. 页岩气压裂返排液的组成及处理技术 [J]. 环境科学与技术, 2016, 39(S2): 166-171. HUANG L, LI H Q, YANG P. The Components and Treatment of Shale Gas Fracturing Flowback Water [J]. Environmental Science & Technology, 2016, 39(S2): 166-171(in Chinese).
[66] TANG P, LI J L, LI T, et al. Efficient integrated module of gravity driven membrane filtration, solar aeration and GAC adsorption for pretreatment of shale gas wastewater. [J]. Journal of hazardous materials, 2021: 405. [67] CHANG H Q, LIU S, TONG T Z, et al. On-Site Treatment of Shale Gas Flowback and Produced Water in Sichuan Basin by Fertilizer Drawn Forward Osmosis for Irrigation [J]. Environmental science & technology, 2020, 54(17). [68] 向夕品. 三氯乙烯和四氯乙烯处理方法研究进展 [J]. 渝州大学学报(自然科学版), 2002, 19(4): 77-82. XIANG X P. Research progress in treatment methods of trichloroethylene and perchloroethylene [J]. Journal of Yuzhou University (Natural Sciences Edition), 2002, 19(4): 77-82(in Chinese).
[69] CRAMPON M, HELLAL J, MOUVET C, et al. Degradation of tetrachloroethylene by zero valent iron nanoparticles in the presence of a natural groundwater bacterial biofilm in a sandy porous media [J]. Heliyon, 2021, 7(1): e05854. doi: 10.1016/j.heliyon.2020.e05854 [70] REN Q D, XIE X N, TANG Y, et al. Methyl tertiary-butyl ether inhibits THP-1 macrophage cholesterol efflux in vitro and accelerates atherosclerosis in ApoE-deficient mice in vivo [J]. Journal of Environmental Sciences, 2021, 101: 236-247. doi: 10.1016/j.jes.2020.08.011 [71] SQUILLACE P J, PANKOW J F, KORTE N E, et al. Review of the environmental behavior and fate of methyl tert-butyl ether [J]. Environmental Toxicology and Chemistry, 1997, 16(9): 1836-1844. doi: 10.1002/etc.5620160911