-
大气颗粒物(PM)污染问题因其对自然环境和人类健康的不利影响而成为人们关注的焦点[1]。尤其是细颗粒物(PM2.5,空气动力学当量直径小于或等于2.5 μm的颗粒物),具有易于进入人体、在环境中滞留时间长等特征,进而影响人类健康以及降低大气能见度[2]。水溶性组分是PM2.5中的重要组成部分,会使颗粒物表面具有活性剂的作用,增加了有毒物质的溶解性,从而容易被人体吸收,对人体危害很大[3]。二次无机离子SNA(SO42−、NO3−、NH4+)是PM2.5中最主要的水溶性组分[4-5],并且受能源结构及气象因素的影响,其浓度特征及形成机制在不同区域存在较大的差异[6-7]。例如,在颗粒物污染较重的京津冀区域,重污染天气下二次无机离子在PM2.5中占比均在50%以上[8-9]。
SNA主要由NO2与SO2等气态前体物经过复杂的二次化学反应生成[6]。Guo等对南京的研究发现,SO2的非均相与均相转化过程主要与大气中气态污染物(NO2、SO2和O3)的浓度和相对湿度有关[10]。Gao等发现,高RH会导致高SNA,因为大气中的气溶胶含水量随RH的增加而增加,有利于液相反应发生[11]。因此为控制污染事件的发生,除减少气体前体物的一次排放外,还需要深入分析相对湿度等气象要素对SNA形成的影响[12]。
天津市作为环渤海地区的重要经济中心,又是我国首批沿海开放城市,其空气质量问题一直备受关注。目前对天津市的研究主要集中在污染特征方面,缺乏对其形成机理的分析,尤其是连续重污染过程阶段[13-17]。同时,在以往的研究中,样品采集主要针对某个季节或者某一年,对连续年变化的分析较少[3]。因此,本研究在天津分别采集了2018、2019两年冬、夏季PM2.5样品,测定并分析了PM2.5及水溶性无机离子的浓度特征,同时结合气象参数及氮/硫氧化率揭示了重污染事件发生时SO42−、NO3−的二次转化机制,以期为天津市PM2.5有效的污染防控提供科学依据。
天津冬夏季PM2.5中二次无机离子的特征及重污染事件分析——基于连续两年的观测
Characteristics of secondary inorganic ions in PM2.5 and study of heavy pollution events in winter and summer in Tianjin—Based on observations for two consecutive years
-
摘要: 本研究于2018、2019年的1月和7月在天津市采集PM2.5样品,测定并分析了PM2.5及水溶性无机离子浓度,并结合气象因素及氮/硫氧化率,揭示4次重污染过程SO42−、NO3−的二次转化机制。结果表明,2018及2019年冬季天津市PM2.5浓度均低于2017年的,但夏季PM2.5浓度变化不明显,这可能是冬季受“代煤工程”的影响。SNA(SO42−、NO3−、NH4+)是水溶性离子的主要组分,冬季NO3−占比最高,而夏季SO42−最高,并且浓度呈现出昼夜差异,这可能是受光照强度、温度及相对湿度等气象因素的影响。此外,冬季SNA主要以(NH4)2SO4、NH4NO3和NH4Cl的形式存在,而夏季主要以(NH4)2SO4和NH4NO3的形式存在。冬季NH4NO3的质量浓度明显高于(NH4)2SO4,夏季样品呈现相反的特征。污染天NH4NO3的浓度明显升高,说明硝酸铵的升高是导致PM2.5浓度升高的关键。此外,4次重污染事件中,SO42−、NO3−的生成机制有所不同,冬季污染的形成主要受到相对湿度的影响,而夏季除相对湿度外,还受到O3及温度的影响。Abstract: This study has collected the PM2.5 samples in January and July of 2018 and 2019 in Tianjin. PM2.5 concentrations and water-soluble inorganic ions in the samples were measured, together with information such as meteorological conditions and nitrogen/sulfur oxidation rate, to elucidate the secondary conversion mechanism of SO42− and NO3− in heavy pollution processes. The study reveals that the PM2.5 concentrations in winter of 2018 and 2019 were lower than those in 2017, while the change of PM2.5 concentrations in two summers was not significant. This temporal variation might be related to the Coal Substitution Project in winter. SNA (SO42−、NO3−、NH4+) is the main component of water-soluble ions. NO3− dominated SNA in winter while SO42− was dominant in summer. The concentration of SNA also showed a diurnal difference. These variances might be due to the different meteorological factors such as light intensity, temperature and relative humidity. In addition, SNA mainly existed in the forms of (NH4)2SO4, NH4NO3 and NH4Cl in winter, but only (NH4)2SO4 and NH4NO3 in summer. The mass concentration of NH4NO3 was obviously higher than that of (NH4)2SO4 in winter, but the opposite characteristic was present in summer. The NH4NO3 concentration increased significantly in the polluted days, indicating that the increase of NH4NO3 was the key factor for the increase of PM2.5 concentration. Furthermore, the formation mechanism of SO42− and NO3− was different in the four heavy pollution events. The pollution was mainly affected by relative humidity in winter, but relative humidity, O3 and temperature in summer.
-
Key words:
- PM2.5 /
- SNA /
- formation mechanism /
- heavy pollution events /
- pollution characteristics /
- Tianjin
-
表 1 本研究与其他城市PM2.5与SNA的季节浓度对比(μg·m−3)
Table 1. Comparison of PM2.5 and SNA seasonal concentrations in this study with other cities (μg·m−3)
时间
Time城市
CityPM2.5 SO42− NO3− NH4+ SO2 NO2 参考文献
Reference2017年1月 天津市 160.20 24.62 22.27 15.06 27.85 74.43 [18] 2018年1月 天津市 56.55 5.00 9.99 9.21 17.03 57.82 本研究 2019年1月 天津市 97.51 5.59 11.50 7.57 18.69 63.57 本研究 2018年1月 北京市 50.30 6.03 7.68 — — — [20] 2018年1月 石家庄市 108.92 20.86 19. 95 — — — [20] 2018年1月 武汉市 54.46 9.45 15.77 10.26 — — [21] 2018年1月 昆明市 31.00 6.86 2.34 2.49 15.00 34.00 [22] 2018年1月 贵阳市 45.81 10.33 5.92 5.24 — — [4] 2017年7月 天津市 41.09 7.10 4.96 5.67 6.55 30.27 [19] 2018年7月 天津市 43.29 8.85 4.45 5.31 4.26 21.95 本研究 2019年7月 天津市 46.30 10.21 7.52 6.75 5.97 20.06 本研究 2018年7月 北京市 73.74 5.71 6.97 — — — [20] 2018年7月 石家庄市 63.23 7.09 5.72 — — — [20] 注:“—”表示无数据. Note:“–” indicates no data. 表 2 监测期间每日PM2.5污染等级分类
Table 2. Classification of pollution levels based on daily PM2.5 concentration during the sampling period
类别
Category日期
DatePM2.5浓度/(μg·m−3)
PM2.5 concentration空气质量等级
Air quality grade污染日 2018年1月5日 132.46 中度污染 2018年1月7日 118.33 中度污染 污染Ⅰ 2018年1月13日 75.06 轻度污染 2018年1月14日 132.66 中度污染 污染日 2019年1月3日 155.3 重度污染 污染Ⅱ 2019年1月10日 162.29 重度污染 2019年1月11日 242.32 重度污染 2019年1月12日 289.48 重度污染 2019年1月13日 258.22 重度污染 2019年1月14日 127.1 中度污染 污染Ⅲ 2019年1月16日 79.22 轻度污染 2019年1月17日 99.51 轻度污染 2019年1月18日 116.28 中度污染 污染日 2019年1月22日 82.35 轻度污染 2018年8月1日 103.9 轻度污染 污染Ⅳ 2019年7月11日 107.49 轻度污染 2019年7月12日 156.71 中度污染 清洁日 其他时间 <75 优或良 表 3 4次重污染事件气象参数、气体前体物浓度、SOR、NOR及SNA浓度(平均值±标准差)
Table 3. Meteorological parameters, SOR, NOR and concentrations of gas precursors and SNA in four heavy pollution events (mean ± standard deviation)
参数
Parameters事件Ⅰ
Event Ⅰ事件Ⅱ
Event Ⅱ事件Ⅲ
Event Ⅲ事件Ⅳ
Event Ⅳ相对湿度/% 45.90±2.19 55.19±19.07 21.12±4.95 51.34±9.77 温度/℃ 0.93±1.11 0.24±1.75 1.65±2.22 28.23±2.53 风速/(m·s-1) 1.35±0.22 1.42±0.91 1.16±0.40 1.45±0.26 降水/mm 0.00±0.00 0.01±0.04 0.00±0.00 0.00±0.00 PM2.5/(μg·m-3) 103.86±38.72 215.88±76.87 98.34±22.22 131.50±49.73 SO2/(μg·m-3) 24.23±4.13 15.08±8.78 35.71±8.43 7.09±0.34 NO2/(μg·m-3) 78.46±15.07 77.34±19.63 83.42±17.89 14.75±5.80 O3/(μg·m-3) 23.38±10.29 19.62±17.33 9.41±9.85 132.55±45.98 SO42-/(μg·m-3) 9.67±1.58 13.58±4.97 4.43±0.86 9.92±2.92 NO3-/(μg·m-3) 28.19±6.43 22.26±7.18 13.32±4.49 9.00±7.79 NH4+/(μg·m-3) 20.31±3.09 14.54±4.89 8.77±2.63 7.25±3.85 SOR 0.21±0.04 0.40±0.16 0.08±0.01 0.47±0.07 NOR 0.21±0.06 0.17±0.03 0.10±0.02 0.26±0.14 -
[1] LI X R, ZHANG C L, LIU P F, et al. Significant influence of the intensive agricultural activities on atmospheric PM2.5 during autumn harvest seasons in a rural area of the North China Plain [J]. Atmospheric Environment, 2020, 241: 117844. doi: 10.1016/j.atmosenv.2020.117844 [2] CHENG Z, LUO L N, WANG S X, et al. Status and characteristics of ambient PM2.5 pollution in global megacities [J]. Environment International, 2016, 89/90: 212-221. doi: 10.1016/j.envint.2016.02.003 [3] 王国祯, 任万辉, 于兴娜, 等. 沈阳市冬季大气PM2.5中水溶性离子污染特征及来源解析 [J]. 环境科学, 2021, 42(1): 30-37. WANG G Z, REN W H, YU X N, et al. Characteristics and sources of water-soluble ion pollution in PM2.5 in winter in Shenyang [J]. Environmental Science, 2021, 42(1): 30-37(in Chinese).
[4] XIAO H, XIAO H Y, ZHANG Z Y, et al. Chemical characteristics of major inorganic ions in PM2.5 based on year-long observations in Guiyang, southwest China—Implications for formation pathways and the influences of regional transport [J]. Atmosphere, 2020, 11(8): 847. doi: 10.3390/atmos11080847 [5] 赵晴, 李岩岩, 贺克斌, 等. 2019年元宵节重污染期间济宁市PM2.5化学组分特征及污染成因分析 [J]. 环境化学, 2020, 39(4): 900-910. doi: 10.7524/j.issn.0254-6108.2019090902 ZHAO Q, LI Y Y, HE K B, et al. Analysis of PM2.5 chemical characteristics and causes during heavy pollution in Jining City around the Lantern Festival of 2019 [J]. Environmental Chemistry, 2020, 39(4): 900-910(in Chinese). doi: 10.7524/j.issn.0254-6108.2019090902
[6] WANG T Y, HUANG X, WANG Z L, et al. Secondary aerosol formation and its linkage with synoptic conditions during winter haze pollution over Eastern China [J]. Science of the Total Environment, 2020, 730: 138888. doi: 10.1016/j.scitotenv.2020.138888 [7] CHENG Y, YU Q Q, LIU J M, et al. Secondary inorganic aerosol during heating season in a megacity in Northeast China: Evidence for heterogeneous chemistry in severe cold climate region [J]. Chemosphere, 2020, 261: 127769. doi: 10.1016/j.chemosphere.2020.127769 [8] 肖致美, 武婷, 卫昱婷, 等. 天津市PM2.5中二次硝酸盐形成及防控 [J]. 环境科学, 2021, 42(6): 2616-2625. XIAO Z M, WU T, WEI Y T, et al. Formation and prevention of secondary nitrate in PM2.5 in Tianjin [J]. Environmental Science, 2021, 42(6): 2616-2625(in Chinese).
[9] 姚青, 韩素芹, 蔡子颖. 2011年冬季天津PM2.5及其二次组分的污染特征分析 [J]. 环境化学, 2013, 32(2): 313-318. doi: 10.7524/j.issn.0254-6108.2013.02.020 YAO Q, HAN S Q, CAI Z Y. Pollution characteristics of PM2.5 and secondary components in the winter in Tianjin [J]. Environmental Chemistry, 2013, 32(2): 313-318(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.02.020
[10] GUO Z Y, GUO Q J, CHEN S L, et al. Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes [J]. Atmospheric Research, 2019, 217: 198-207. doi: 10.1016/j.atmosres.2018.11.009 [11] GAO J, WEI Y T, SHI G L, et al. Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods [J]. Atmospheric Environment, 2020, 241: 117770. doi: 10.1016/j.atmosenv.2020.117770 [12] ZHANG X, ZHANG K, LIU H P, et al. Pollution sources of atmospheric fine particles and secondary aerosol characteristics in Beijing [J]. Journal of Environmental Sciences, 2020, 95: 91-98. doi: 10.1016/j.jes.2020.04.002 [13] 张金, 姬亚芹, 邢雅彤, 等. 天津市高校夏季道路扬尘PM2.5中水溶性离子污染特征及来源 [J]. 环境科学学报, 2020, 40(5): 1604-1610. ZHANG J, JI Y Q, XING Y T, et al. Characteristics and sources of water-soluble ions in road dust PM2.5 during summer in university campuses of Tianjin [J]. Acta Scientiae Circumstantiae, 2020, 40(5): 1604-1610(in Chinese).
[14] 肖致美, 徐虹, 李立伟, 等. 基于在线观测的天津市PM2.5污染特征及来源解析 [J]. 环境科学, 2020, 41(10): 4355-4363. XIAO Z M, XU H, LI L W, et al. Characterization and source apportionment of PM2.5 based on the online observation in Tianjin [J]. Environmental Science, 2020, 41(10): 4355-4363(in Chinese).
[15] 董志超, 徐占杰, 王爽, 等. 天津市PM2.5中氮含量及同位素的昼夜及季节变化 [J]. 中国环境科学, 2021, 41(3): 1014-1023. doi: 10.3969/j.issn.1000-6923.2021.03.003 DONG Z C, XU Z J, WANG S, et al. Diurnal and seasonal variations of nitrogen contents and isotopic composition of total nitrogen in PM2.5 in Tianjin [J]. China Environmental Science, 2021, 41(3): 1014-1023(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.03.003
[16] GAO J J, WANG K, WANG Y, et al. Temporal-spatial characteristics and source apportionment of PM2.5 as well as its associated chemical species in the Beijing-Tianjin-Hebei region of China [J]. Environmental Pollution, 2018, 233: 714-724. doi: 10.1016/j.envpol.2017.10.123 [17] KHAN J Z, SUN L, TIAN Y Z, et al. Chemical characterization and source apportionment of PM1 and PM2.5 in Tianjin, China: Impacts of biomass burning and primary biogenic sources [J]. Journal of Environmental Sciences, 2021, 99: 196-209. doi: 10.1016/j.jes.2020.06.027 [18] 陶月乐. 基于稳定同位素技术的天津市城区PM2.5污染特征与来源研究[D]. 天津: 天津大学, 2018. TAO Y L. Study on characteristics and sources of PM2.5 pollution in Tianjin urban area based on stable isotope technique[D]. Tianjin: Tianjin University, 2018(in Chinese).
[19] 冯晓青. 代煤工程前后天津市冬季PM2.5污染特征与来源对比研究[D]. 天津: 天津大学, 2019. FENG X Q. In sight of pollution characteristics and sources comparison of PM2.5 before and after the Coal Replacing Project in Tianjin wintertime [D]. Tianjin: Tianjin University, 2019(in Chinese).
[20] 王传达, 周颖, 程水源, 等. 北京、石家庄2017—2018年PM2.5与SNA组分特征及典型重污染分析 [J]. 环境科学学报, 2020, 40(4): 1340-1350. WANG C D, ZHOU Y, CHENG S Y, et al. Characteristics of PM2.5 and SNA composition and typical heavy pollution analysis in Beijing and Shijiazhuang from 2017 to 2018 [J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1340-1350(in Chinese).
[21] WANG W Q, ZHANG W L, DONG S Y, et al. Characterization, pollution sources, and health risk of ionic and elemental constituents in PM2.5 of Wuhan, central China [J]. Atmosphere, 2020, 11(7): 760. doi: 10.3390/atmos11070760 [22] GUO W, ZHANG Z Y, ZHENG N J, et al. Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons [J]. Atmospheric Research, 2020, 234: 104687. doi: 10.1016/j.atmosres.2019.104687 [23] 伍潘. 成都市PM2.5水溶性无机离子及气态前体物污染特征分析[D]. 成都: 西南交通大学, 2019. WU P. Characterization of water soluble inorganic ions in PM2.5 and gaseous precursors[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese).
[24] YANG H M, PENG Q, ZHOU J, et al. The unidirectional causality influence of factors on PM2.5 in Shenyang city of China [J]. Scientific Reports, 2020, 10: 8403. doi: 10.1038/s41598-020-65391-5 [25] ZHANG L C, AN J, LIU M Y, et al. Spatiotemporal variations and influencing factors of PM2.5 concentrations in Beijing, China [J]. Environmental Pollution, 2020, 262: 114276. doi: 10.1016/j.envpol.2020.114276 [26] 何丹, 徐宝平, 吴丽芳, 等. 江西省典型城市气象因素对PM2.5和PM10污染特征影响分析: 以萍乡市为例 [J]. 能源研究与管理, 2020(4): 42-46,52. HE D, XU B P, WU L F, et al. Analysis of the impact of meteorological factors on the pollution characteristics of PM2.5 and PM10 in the typical cities of Jiangxi Province—taking Pingxiang city as an example [J]. Energy Research and Management, 2020(4): 42-46,52(in Chinese).
[27] 张众志, 唐伟, 杜晓惠, 等. 气象因素对“2+26”城市春节期间PM2.5污染影响模拟研析 [J]. 环境影响评价, 2020, 42(6): 6-10, 69. ZHANG Z Z, TANG W, DU X H, et al. The impacts of meteorological parameters on PM2.5 simulations in “2 + 26” cities during spring festival [J]. Environmental Impact Assessment, 2020, 42(6): 6-10, 69(in Chinese).
[28] LONG T F, PENG B, YANG Z H, et al. Spatial distribution and formation mechanism of water-soluble inorganic ions in PM2.5 during a typical winter haze episode in Guilin, China [J]. Archives of Environmental Contamination and Toxicology, 2020, 78(3): 367-376. doi: 10.1007/s00244-019-00699-6 [29] LI J, ZHANG Y L, CAO F, et al. Stable sulfur isotopes revealed a major role of transition-metal ion-catalyzed SO2 oxidation in haze episodes [J]. Environmental Science & Technology, 2020, 54(5): 2626-2634. [30] SHAO J Y, CHEN Q J, WANG Y X, et al. Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: Air quality model assessment using observations of sulfate oxygen isotopes in Beijing [J]. Atmospheric Chemistry and Physics, 2019, 19(9): 6107-6123. doi: 10.5194/acp-19-6107-2019 [31] 张亚婷. 济南市细颗粒物硫酸盐的变化趋势、污染特征与二次生成[D]. 济南: 山东大学, 2018. ZHANG Y T. Trend, pollution characteristics, and secondary formation of sulfates in fine particles in urban ji’nan[D]. Jinan: Shandong University, 2018(in Chinese).
[32] LI H, MA Y L, DUAN F K, et al. Stronger secondary pollution processes despite decrease in gaseous precursors: A comparative analysis of summer 2020 and 2019 in Beijing [J]. Environmental Pollution, 2021, 279: 116923. doi: 10.1016/j.envpol.2021.116923 [33] FENG X Q, LI Q K, TAO Y L, et al. Impact of Coal Replacing Project on atmospheric fine aerosol nitrate loading and formation pathways in urban Tianjin: Insights from chemical composition and 15N and 18O isotope ratios [J]. Science of the Total Environment, 2020, 708: 134797. doi: 10.1016/j.scitotenv.2019.134797 [34] LIN Y C, ZHANG Y L, FAN M Y, et al. Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China [J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3999-4011. doi: 10.5194/acp-20-3999-2020 [35] LI Q K, LI X D, YANG Z, et al. Diurnal and seasonal variations in water-soluble inorganic ions and nitrate dual isotopes of PM2.5: Implications for source apportionment and formation processes of urban aerosol nitrate [J]. Atmospheric Research, 2021, 248: 105197. doi: 10.1016/j.atmosres.2020.105197 [36] 文亮. 华北典型地区大气细颗粒硝酸盐及气态亚硝酸变化规律与机理研究[D]. 济南: 山东大学, 2019. WEN L. Variation rules and mechanisms of the atmospheric fine particulate nitrate and gaseous nitrous acid over the North China[D]. Jinan: Shandong University, 2019(in Chinese).
[37] 冯炎鹏, 张军科, 黄小娟, 等. 成都夏冬季PM2.5中水溶性无机离子污染特征 [J]. 环境科学, 2020, 41(7): 3012-3020. FENG Y P, ZHANG J K, HUANG X J, et al. Pollution characteristics of water-soluble inorganic ions in Chengdu in summer and winter [J]. Environmental Science, 2020, 41(7): 3012-3020(in Chinese).
[38] 张蒙, 韩力慧, 刘保献, 等. 北京市冬季重污染期间PM2.5及其组分演变特征 [J]. 中国环境科学, 2020, 40(7): 2829-2838. doi: 10.3969/j.issn.1000-6923.2020.07.006 ZHANG M, HAN L H, LIU B X, et al. Evolution of PM2.5 and its components during heavy pollution episodes in winter in Beijing [J]. China Environmental Science, 2020, 40(7): 2829-2838(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.006
[39] 武志宏, 孙爽, 武高峰, 等. 保定市PM2.5中水溶性离子污染特征及来源分析 [J]. 环境化学, 2021, 40(5): 1421-1430. doi: 10.7524/j.issn.0254-6108.2019120901 WU Z H, SUN S, WU G F, et al. The pollution pattern and source analysis of water-soluble ions of PM2.5 in Baoding City [J]. Environmental Chemistry, 2021, 40(5): 1421-1430(in Chinese). doi: 10.7524/j.issn.0254-6108.2019120901
[40] LIU Y C, FENG Z M, ZHENG F X, et al. Ammonium nitrate promotes sulfate formation through uptake kinetic regime[J]. Atmospheric Chemistry and Physics Discussions, 2021, 21(17): 13269-13286. [41] 汪鹏, 熊春, 吴育杰, 等. 杭州市2017年冬季一次重灰霾过程中PM2.5水溶性离子特征、来源及成因分析 [J]. 浙江大学学报(理学版), 2019, 46(3): 345-353. WANG P, XIONG C, WU Y J, et al. A heavy haze episode in Hangzhou city in the winter of 2017: Characteristics of PM2.5 water-soluble components, causes and origins [J]. Journal of Zhejiang University (Science Edition), 2019, 46(3): 345-353(in Chinese).
[42] 姬艺珍, 郭伟, 胡正华, 等. 太原市PM2.5积累特征及重污染天气成因分析 [J]. 环境科学学报, 2021, 41(3): 853-862. JI Y Z, GUO W, HU Z H, et al. Accumulation characteristics of PM2.5 and the causes of serious pollution weather in Taiyuan city, China [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 853-862(in Chinese).
[43] LIU Y C, ZHAO H J, MA Y J, et al. Characteristics of particulate matter and meteorological conditions of a typical air-pollution episode in Shenyang, northeastern China, in winter 2017 [J]. Atmospheric Pollution Research, 2021, 12(1): 316-327. doi: 10.1016/j.apr.2020.09.007 [44] LI S W, CHANG M H, LI H M, et al. Chemical compositions and source apportionment of PM2.5 during clear and hazy days: Seasonal changes and impacts of Youth Olympic Games [J]. Chemosphere, 2020, 256: 127163. doi: 10.1016/j.chemosphere.2020.127163 [45] XU L L, DUAN F K, HE K B, et al. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing [J]. Environmental Pollution, 2017, 227: 296-305. doi: 10.1016/j.envpol.2017.04.076 [46] 刘兴瑞, 马嫣, 崔芬萍, 等. 南京北郊一次重污染事件期间PM2.5理化特性及其对大气消光的影响 [J]. 环境化学, 2016, 35(6): 1164-1171. doi: 10.7524/j.issn.0254-6108.2016.06.2015111004 LIU X R, MA Y, CUI F P, et al. Physicochemical characteristics of PM2.5 and impacts on light extinction during the heavy pollution period at North Suburban Nanjing [J]. Environmental Chemistry, 2016, 35(6): 1164-1171(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015111004
[47] PAN Y Y, LUO L, XIAO H W, et al. A one-year comprehensive characteristics of water soluble inorganic ions in PM2.5 from a typical mountainous city [J]. Atmospheric Pollution Research, 2020, 11(11): 1883-1890. doi: 10.1016/j.apr.2020.08.006 [48] 文建辉, 陈筱佳, 宋韶华, 等. 桂林市秋季PM2.5组分特征及高浓度硫酸根形成机制初探 [J]. 环境化学, 2017, 36(12): 2676-2682. doi: 10.7524/j.issn.0254-6108.2017031402 WEN J H, CHEN X J, SONG S H, et al. Composition of PM2.5 and the formation mechanism of high secondary sulfate in the fall season of Guilin City [J]. Environmental Chemistry, 2017, 36(12): 2676-2682(in Chinese). doi: 10.7524/j.issn.0254-6108.2017031402