-
土壤健康是农业发展的基础,由于长期的旷业资源开采和金属冶炼活动,空气沉降或者地球化学背景值较高[1]等因素,造成农林产品种植区土壤重金属污染[2]。各地区的土壤重金属污染状况不同,且农林作物对重金属的富集能力各有差异[3-4]。
当前,国家高度重视土壤面源污染状况,相继出台了《土壤污染行动防治计划》《中华人民共和国土壤污染防治法》等法律法规,全面部署土壤污染防治工作,切实保障粮食安全。2018年《全国土壤污染状况调查公报》显示,耕地和林地分别超标19.4%和10.0%,需高度关注农林土壤环境质量对食品质量安全的影响[5]。贵州省受限于耕地资源少,因此部分重金属含量超标的土壤仍被用于农业或可食用林产品的生产,对产品安全和人体健康存在一定的安全隐患[6-8]。有学者开发了地积累指数法,潜在生态风险指数法等评价模型[9],同时建立了一系列的健康风险评价模型,CLEA(Contaminated land exposure assessment)、HRA(Health risk assessment)等[10],以评估土壤重金属引发的不良健康影响[11]。目前,大多学者采用生态环境标准《建设用地土壤污染风险评估技术导则》(HJ25.3-2019)方法开展农用地等土壤健康风险评估[12-13]。贵州省大力发展特色食用林产品油茶、核桃、刺梨等,然而目前的研究主要聚焦于矿区农田土壤的重金属污染状况[14],对林地或发展食用林产品用地关注度较低,缺乏研究不同区域土壤中重金属污染的生态风险,客观正确的评价土壤健康状况,且对林地污染控制修复以及安全利用的相关研究较少。食用林产品产区土壤的健康风险评估亟待进行。因此,开展油茶主产区土壤污染状况调查和风险评价,促进油茶产业的健康发展,树立绿色健康食品的品牌形象有重要的现实意义。
本文主要针对贵州油茶主产区产地土壤重金属污染状况进行研究,明确主要污染物Pb、Cd、Hg、As、Cu和Cr的含量,评价产地土壤重金属污染状况,评价生态风险和健康风险。为贵州油茶产区土壤重金属污染防治、风险管控等提供科学依据。
贵州油茶主产区土壤重金属环境质量状况及风险评价
Pollution and risk assessment of heavy metals in camellia oleifera main producing area soil of Guizhou Province
-
摘要: 为评价重金属污染对油茶籽油质量安全的影响,分析了贵州省油茶产地256份土壤样品中重金属元素Pb、Cd、Hg、As、Cu和Cr的含量,并采用地积累指数法、潜在生态危害指数法和健康风险评价模型对土壤重金属污染进行风险评价。结果表明,Pb、Cd、Hg、As和Cu含量超过贵州土壤背景值占比大于50%以上,Cr约10%的样点超过背景值。土壤中Cd和Hg含量超过管制值(GB 15618-2018)的样点分别占总样点的13.9%和0.39%,Pb、As、Cu和Cr含量无超过管制值的样点。地积累指数法评价结果表明,产区土壤主要受Cd、Hg的污染,污染程度主要为轻度和中度污染,样点占比分别为33.6%和38.68%,而Pb、As、Cu轻度和中度污染占比均低于6%。Cd和Hg在综合潜在生态指数中占比最重,对综合生态风险平均贡献率分别为30.84%和56.35%。综合生态风险中轻微、中等、重度、强烈污染程度的样点分别占总样点数的33.59%、40.63%、16.80%、8.98%。重金属对儿童的非致癌风险高于成人,成人和儿童综合非致癌风险(THI)分别为0.795、4.82,综合致癌风险(TCR)分别为1.58×10−5、6.56×10−5,儿童的非致癌风险主要由As贡献,致癌风险主要由As和Cr贡献,致癌风险对于成人和儿童整体处在可接受水平。Abstract: To evaluate the influence of heavy metal pollution on the quality and safety of camellia oleosa seed oil, the characteristic of heavy metal pollution and health risks of heavy metals in main production areas of Camellia oleifera soil in Guizhou were studied in this paper. Pb, Cd, Hg, As, Cu and Cr were detected from 256 soil samples, and the data were assessed by geoaccumulation Index, potential ecological risk index and health risk assessment model. The result show that the content of Pb, Cd, Hg, As and Cu exceeded the background value of Guizhou soil by more than 50%, and Cr content exceeded the background value about 10%. The samples of Cd and Hg were greater than the control value of soil pollution risk for agricultrural land (GB 15618-2018) accounted for 13.9% and 0.39% of the total samples, respectively, while no samples with Pb, As, Cu and Cr content exceeding the control value. The evaluation results of geoaccumulation Index show that the soil in the producing areas was mainly polluted by Cd and Hg, and the pollution degree was mainly mild and moderate, with samples accounting for 33.6% and 38.68%, respectively, while the proportion of Pb, As and Cu was less than 6%, respectively. Cd and Hg contributed 30.84% and 56.35% to the comprehensive ecological risk on average, respectively. The samples with mild, moderate, severe and strong pollution levels accounted for 33.59%, 40.63%, 16.80% and 8.98% of total samples, respectively. Health risk assessment show that the non-carcinogenic risk of children was higher than of adults, the comprehensive non-carcinogenic risk index (THI) of heavy metal to adults and children was 0.795 and 4.82, respectively, and comprehensive carcinogenic risk index (TCR) was1.58×10−5, 6.56×10−5, respectively. The non-carcinogenic risk higher for children was mainly contributed by As, while carcinogenic risk was mainly contributed by As and Cr, the carcinogenic risk is acceptable for adults and children as a whole.
-
表 1 地积累指数和潜在生态风险指数分级标准
Table 1. Grading standard of the geo-accumulation index and potential ecological risk index
地积累指数 $ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 生态风险指数 Ei 综合生态风险 IR 范围 Range 污染水平 Pollution level 范围 Range 污染水平 Pollution level 范围 Range 污染水平 Pollution level <0$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 无污染 <40$ {E}_{i} $ 轻微 RI<150 轻微 0≤ <1$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 轻微 40≤ <80$ {E}_{i} $ 中等 150≤RI<300 中等 1≤ <2$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 轻度 80≤ <160$ {E}_{i} $ 重度 300≤RI<600 重度 2≤ <3$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 中度 160≤ <320$ {E}_{i} $ 强烈 RI≥600 强烈 3≤ <4$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 重度 ≥320$ {E}_{i} $ 极强 4≤ <5$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 严重 ≥5$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $ 极严重 表 2 健康风险评估参数
Table 2. Parameters of health risk assessment
参数
Parameter参数意义
Parameters significance and units单位
Units取值 Value 成人Adults 儿童Children OSRI 每日摄入土壤量 Mg·d−1 100 200 ED 暴露期 a 24 6 EF 暴露频率 d·a−1 350 350 ABSO 经口摄入因子 无量纲 1 1 ABSd 皮肤接触吸收因子 无量纲 As取0.03,其余取0.001 BW 平均体重 kg 61.8 19.2 ATnc 非致癌效率平均时间 d 8760 2190 ATca 致癌效率平均时间 d 27740 27740 SAE 暴露皮肤面积 cm2 5374 2848 SSAR 皮肤表面土壤粘附系数 mg·cm−2 0.07 0.2 Ev 每日皮肤接触事件频率 次·d−1 1 1 PM10 空气中可吸入颗粒物含量 mg·m−3 0.119 0.119 DAIR 每日空气呼吸量 m3·d−1 14.5 7.5 PIAF 吸入土壤颗粒物在体内滞留比例 无量纲 0.75 0.75 fspo 室外空气中来自土壤的颗粒物所占比例 无量纲 0.5 0.5 fspi 室内空气中来自土壤的颗粒物所占比例 无量纲 0.8 0.8 EFO 室外暴露频率 d·a−1 87.5 87.5 EFI 室内暴露频率 d·a−1 262.5 262.5 表 3 非致癌金属的参考剂量(RFD)和致癌金属的斜率因子(SF)
Table 3. References dose (RFD) for non-carcinogen metals andslope factors (SF) for carcinogenmetal
重金属Heavy metal RfD(kg·kg−1·d−1) SF((kg·kg−1·d−1)−1) 经口摄入RfDO 皮肤接触RfDd 呼吸吸入RfDi 经口摄入SFo 呼吸吸入SFi 皮肤接触SFd Pb 3.5 10−3$ \times $ 5.25 10−4$ \times $ 3.52 10−3$ \times $ — — — Cd 1.0 10−3$ \times $ 1.0 10−5$ \times $ 1.0 10−3$ \times $ 0.38 7.67 15.2 Hg 3.0 10−4$ \times $ 2.10 10−5$ \times $ 8.57 10−5$ \times $ — — — As 1.0 10−4$ \times $ 1.23 10−4$ \times $ 0.30 1.50 18.33 1.50 Cu 0.04 0.012 0.04 — 0.84 — Cr 3.0 10−3$ \times $ 3.0 10−3$ \times $ 2.86 10−5$ \times $ — 51.14 — 表 4 重金属元素综合致癌效应的土壤风险控制值
Table 4. Soil risk control values of comprehensive carcinogenic effects of heavy metals
元素
ElementsCd As Cu Cr 风险控制值 9.63 10−3$ \times $ 4.07 10−3$ \times $ 8.95 10−2$ \times $ 1.47 10−3$ \times $ 表 5 油茶产地土壤重金属含量特征及pH值
Table 5. Contents of heavy metals and pH in Camellia origin soil
含量/(mg·kg−1)
Content指标 Indexes Pb Cd Hg As Cu Cr pH 背景值 33.57 0.40 0.13 13.48 34.50 98.98 - 最大值 696.41 28.51 2.13 275.96 316.14 290.79 8.25 最小值 7.22 0.04 0.02 2.42 4.61 8.65 3.87 平均值 46.67 1.46 0.45 19.61 35.57 62.71 6.06 标准偏差 54.99 2.62 0.35 20.07 34.93 34.66 1.30 大于背景值样点/% 56.25 64.84 94.14 58.59 56.25 9.38 - 大于管制值样点/% 0.00 13.90 0.39 0.00 - 0.00 - 注“-”表示未参与计算. 表 6 土壤重金属非致癌健康风险评价结果
Table 6. Results of non-carcinogenic health risk assessment of soil heavy metals
重金属
Heavy metal经口摄入HQois 皮肤接触HQdcs 呼吸吸入HQpis 总非致癌风险 (HI) 成人Adults 儿童Children 成人Adults 儿童Children 成人Adults 儿童Children 成人Adults 儿童Children Pb Max 6.17×10 −1 3.97 1.55×10−3 3.02×10−1 5.76×10−2 9.59×10−2 6.77×10−1 4.37 Min 6.40×10−3 4.12×10−2 1.60×10−5 3.13×10−3 5.97×10−4 9.94×10−4 7.01×10−3 4.53×10−2 Average 4.14×10−2 2.66×10−1 1.04×10−4 2.02×10−2 3.86×10−3 6.43×10−3 4.53×10−2 2.93×10−1 Cd Max 8.85×10−2 5.70×10−1 3.33×10−3 6.49×10−1 8.30×10−4 1.38×10−3 9.26×10−2 1.22 Min 1.11×10−4 7.15×10−4 4.18×10−6 8.15×10−4 1.04×10−6 1.74×10−6 1.16×10−4 1.53×10−3 Average 4.54×10−3 2.92×10−2 1.71×10−4 3.33×10−2 4.26×10−5 7.09×10−5 4.75×10−3 6.25×10−2 Hg Max 2.20×10−2 1.42×10−1 1.18×10−4 2.31×10−2 7.24×10−4 1.21×10−3 2.29×10−2 1.66×10−1 Min 1.65×10−4 1.06×10−3 8.86×10−7 1.73×10−4 5.42×10−6 9.02×10−6 1.71×10−4 1.24×10−3 Average 4.62×10−3 2.97×10−2 2.48×10−5 4.84×10−3 1.52×10−4 2.53×10−4 4.80×10−3 3.48×10−2 As Max 8.56 55.10 2.62×10−3 5.11×10−1 2.68×10−5 4.46×10−5 8.57 55.60 Min 7.52×10−2 4.84×10−1 2.30×10−5 4.49×10−3 2.35×10−7 3.92×10−7 7.53×10−2 4.89×10−1 Average 6.09×10−1 3.92 1.86×10−4 3.63×10−2 1.90×10−6 3.17×10−6 6.09×10−1 3.95 Cu Max 2.45×10−2 1.58×10−1 3.08×10−5 6.00×10−3 2.30×10−4 3.83×10−4 2.48×10−2 1.64×10−1 Min 3.58×10−4 2.30×10−3 4.48×10−7 8.74×10−5 3.35×10−6 5.59×10−6 3.61×10−4 2.39×10−3 Average 2.76×10−3 1.78×10−2 3.46×10−6 6.75×10−4 2.59×10−5 4.31×10−5 2.79×10−3 1.85×10−2 Cr Max 3.01×10−1 1.94 1.13×10−4 2.21×10−2 2.96×10−1 1.71×10−1 5.97×10−1 2.13 Min 8.95×10−3 5.76×10−2 3.37×10−6 6.56×10−4 8.80×10−3 5.08×10−3 1.78×10−2 6.33×10−2 Average 6.49×10−2 4.18×10−1 2.44×10−5 4.76×10−3 6.38×10−2 3.68×10−2 1.29×10−1 4.59×10−1 HQ Max 8.91 57.40 5.32×10−3 1.04 3.02×10−1 1.80×10−1 9.16 58.20 Min 9.75×10−2 6.28×10−1 6.27×10−5 1.22×10−2 1.10×10−2 8.41×10−3 1.11×10−1 6.49×10−1 Average 7.27×10−1 4.68 5.13×10−4 1.00×10−1 6.79×10−2 4.36×10−2 7.95×10−1 4.82 表 7 土壤重金属致癌健康风险评价结果
Table 7. Results of carcinogenic health risk assessment of soil heavy metals
重金属
Heavy metal经口摄入CRois 皮肤接触CRdcs 呼吸吸入CRpis 致癌风险TCR 成人Adults 儿童Children 成人Adults 儿童Children 成人Adults 儿童Children 成人Adults 儿童Children Cd Max 5.31×10−6 8.54×10−6 4.11×10−7 2.18×10−5 1.99×10−6 8.29×10−7 7.41×10−6 3.12×10−5 Min 6.67×10−9 1.07×10−8 1.22×10−8 3.18×10−7 2.50×10−9 1.04×10−9 2.67×10−8 3.29×10−7 Average 2.72×10−7 4.38×10−7 8.87×10−8 2.45×10−6 1.02×10−7 4.25×10−8 4.63×10−7 2.93×10−6 As Max 2.03×10−4 3.26×10−4 9.82×10−7 4.79×10−5 1.90×10−6 7.92×10−7 2.06×10−4 3.66×10−4 Min 1.78×10−6 2.87×10−6 2.92×10−8 1.42×10−6 1.67×10−8 6.96×10−9 1.84×10−6 4.91×10−6 Average 1.44×10−5 2.32×10−5 2.12×10−7 1.03×10−5 1.35×10−7 5.63×10−8 1.48×10−5 3.36×10−5 Cu Max — — 4.89×10−8 2.39×10−6 — — 4.89×10−8 2.39×10−6 Min — — 7.14×10-10 3.48×10−8 — — 7.14×1010 3.48×10−8 Average — — 5.51×10−9 2.68×10−7 — — 5.51×10−9 2.68×10−7 Cr Max — — 2.74×10−6 1.34×10−4 — — 2.74×10−6 1.34×10−4 Min — — 8.15×10−8 3.97×10−6 — — 8.15×10−8 3.97×10−6 Average — — 5.91×10−7 2.88×10−5 — — 5.91×10−7 2.88×10−5 CR Max 2.04×10−4 3.29×10−4 4.14×10−6 1.85×10−4 2.42×10−6 1.01×10−6 2.10×10−4 4.86×10−4 Min 1.79×10−6 2.88×10−6 1.31×10−7 8.07×10−6 1.92×10−8 8.00×10−9 1.98×10−6 1.10×10−5 Average 1.47×10−5 2.36×10−5 8.97×10−7 4.19×10−5 2.37×10−7 9.88×10−8 1.58×10−5 6.56×10−5 注:“—”表示无法计算。Note: “—”Means unable to calculate. -
[1] 秦旭芝, 罗志祥, 季文兵, 等. 桂西北地质高背景区有色金属冶炼对周边土壤重金属污染与生态风险评价 [J]. 生态学杂志, 2021, 40(8): 2324-2333. doi: 10.13292/j.1000-4890.202108.012 QIN X Z, LUO Z X, JI W B, et al. Pollution and ecological risk assessment of heavy metals in surrounding soil by nonferrous metal smelting with high geological background in Northwest Guangxi [J]. Chinese Journal of Ecology, 2021, 40(8): 2324-2333(in Chinese). doi: 10.13292/j.1000-4890.202108.012
[2] 黄钟霆, 易盛炜, 陈贝贝, 等. 典型锰矿区周边农田土壤-农作物重金属污染特征及生态风险评价 [J]. 环境科学, 2022, 43(2): 975-984. HUANG Z T, YI S W, CHEN B B, et al. Pollution properties and ecological risk assessment of heavy metals in farmland soils and crops around a typical manganese mining area [J]. Environmental Science, 2022, 43(2): 975-984(in Chinese).
[3] LI Z Y, MA Z W, van der KUIJP T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment [J]. Science of the Total Environment, 2014, 468/469: 843-853. doi: 10.1016/j.scitotenv.2013.08.090 [4] BOŠKOVIĆ-RAKOČEVIĆ L, MILIVOJEVIĆ J, MILOŠEVIĆ T, et al. Heavy metal content of soils and plum orchards in an uncontaminated area [J]. Water, Air, & Soil Pollution, 2014, 225(11): 1-13. [5] 马鑫鹏. 泰来县耕地土壤重金属污染评价及安全利用分区研究[D]. 哈尔滨: 东北农业大学, 2019. MA X P. Heavy metal pollution assessment and safety utilization zoning of cultivated soil in Tailai County[D]. Harbin: Northeast Agricultural University, 2019(in Chinese).
[6] 曾庆庆, 付天岭, 邹洪琴, 等. 贵州省某县辣椒种植区土壤重金属空间分布特征及来源解析 [J]. 农业环境科学学报, 2021, 40(1): 102-113. doi: 10.11654/jaes.2020-0665 ZENG Q Q, FU T L, ZOU H Q, et al. Spatial distribution characteristics and sources of heavy metals in soil in a pepper growing area of County in Guizhou Province, China [J]. Journal of Agro-Environment Science, 2021, 40(1): 102-113(in Chinese). doi: 10.11654/jaes.2020-0665
[7] 苏翠兰, 杨乐. 贵州省望谟县耕地土壤重金属含量特征及影响因素 [J]. 现代矿业, 2020, 36(7): 17-19,22. SU C L, YANG L. Characteristics of heavy metal content in cultivated soil of Wangmo County, Guizhou Province and their influencing factors [J]. Modern Mining, 2020, 36(7): 17-19,22(in Chinese).
[8] 汤向宸. 万山汞矿区重金属污染特征及环境风险评估[D]. 贵阳: 贵州师范大学, 2020. TANG X C. Heavy metal pollution characteristics and environmental risk assessment in Wanshan mercury mining area[D]. Guiyang: Guizhou Normal University, 2020(in Chinese).
[9] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [10] HU B F, WANG J Y, JIN B, et al. Assessment of the potential health risks of heavy metals in soils in a coastal industrial region of the Yangtze River Delta [J]. Environmental Science and Pollution Research International, 2017, 24(24): 19816-19826. doi: 10.1007/s11356-017-9516-1 [11] YANG J, LV F H, ZHOU J C, et al. Health risk assessment of vegetables grown on the contaminated soils in Daye City of Hubei Province, China [J]. Sustainability, 2017, 9(11): 2141. doi: 10.3390/su9112141 [12] WANG M L, LIU R H, LU X Y, et al. Heavy metal contamination and ecological risk assessment of swine manure irrigated vegetable soils in Jiangxi Province, China [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(5): 634-640. doi: 10.1007/s00128-018-2315-7 [13] ZHU D W, WEI Y, ZHAO Y H, et al. Heavy metal pollution and ecological risk assessment of the agriculture soil in Xunyang mining area, Shaanxi Province, northwestern China [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 101(2): 178-184. doi: 10.1007/s00128-018-2374-9 [14] RAHMAN M S, BISWAS P K, AL HASAN S M, et al. The occurrences of heavy metals in farmland soils and their propagation into paddy plants [J]. Environmental Monitoring and Assessment, 2018, 190(4): 201. doi: 10.1007/s10661-018-6577-7 [15] 中华人民共和国环境保护部. 土壤和沉积物 12种金属元素的测定 王水提取-电感耦合等离子体质谱法: HJ 803—2016[S]. 北京: 中国环境科学出版社, 2016. Ministry of Environmental Protection of the People's Republic of China. Soil and sediment-Determination of aqua regia extracts of 12 metal elements-Inductively coupled plasma mass spectrometry: HJ 803—2016[S]. Beijing: China Environment Science Press, 2016(in Chinese).
[16] 中华人民共和国环境保护部. 土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法: HJ 680—2013[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of the People's Republic of China. Soil and sedimen—determination of mercury, arsenic, selenium, bismuth, antimony—microwave dissolution/atomic fluorescence spectrometry: HJ 680—2013[S]. Beijing: China Environment Science Press, 2014(in Chinese).
[17] WANG N, HAN J C, WEI Y, et al. Potential ecological risk and health risk assessment of heavy metals and metalloid in soil around Xunyang mining areas [J]. Sustainability, 2019, 11(18): 4828. doi: 10.3390/su11184828 [18] 蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析 [J]. 贵州地质, 2020, 37(3): 233-239. doi: 10.3969/j.issn.1000-5943.2020.03.003 CAI D W, LI L B, JIANG G C, et al. Statistics and analysis of geochemical backgrounds of main elements of cultivated land in Guizhou Province [J]. Guizhou Geology, 2020, 37(3): 233-239(in Chinese). doi: 10.3969/j.issn.1000-5943.2020.03.003
[19] 中华人民共和国环境保护部. 污染场地风险评估技术导则: HJ 25.3—2014[S]. 北京: 中国环境科学出版社, 2014. Ministry of Environmental Protection of the People's Republic of China. Technical guidelines for risk assessment of contaminated sites: HJ 25.3—2014[S]. Beijing: China Environment Science Press, 2014(in Chinese).
[20] 崔云霞, 曹炜琦, 李伟迪, 等. 长三角农业活动区农田土壤重金属风险评价 [J]. 农业环境科学学报, 2021, 40(7): 1441-1450. doi: 10.11654/jaes.2020-1362 CUI Y X, CAO W Q, LI W D, et al. Risk assessment of heavy metals in farmland soils in an agricultural region in the Yangtze River Delta [J]. Journal of Agro-Environment Science, 2021, 40(7): 1441-1450(in Chinese). doi: 10.11654/jaes.2020-1362
[21] HOU S N, ZHENG N, TANG L, et al. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L. ) rhizospheric soil of non-ferrous metals smelting area [J]. Environmental Monitoring and Assessment, 2019, 191(10): 634. doi: 10.1007/s10661-019-7793-5 [22] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2013. Ministry of Ecology and Enviironment of the People’s Republic of China, State Administration for Market Regulation. . Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: Standards Press of China, 2013(in Chinese).
[23] HAN Y X, NI Z L, LI S L, et al. Distribution, relationship, and risk assessment of toxic heavy metals in walnuts and growth soil [J]. Environmental Science and Pollution Research International, 2018, 25(18): 17434-17443. doi: 10.1007/s11356-018-1896-3 [24] TOKATLI C, UĞURLUOĞLU A, KÖSE E, et al. Ecological risk assessment of toxic metal contamination in a significant mining basin in Turkey [J]. Environmental Earth Sciences, 2021, 80(1): 1-19. doi: 10.1007/s12665-020-09327-2 [25] 雷雷佳, 刘俊, 刘卫国, 等. 工业园周边土壤重金属污染特征及潜在生态风险评价 [J]. 江苏农业科学, 2021, 49(16): 227-233. doi: 10.15889/j.issn.1002-1302.2021.16.042 LEI L J, LIU J, LIU W G, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in soil around industrial park [J]. Jiangsu Agricultural Sciences, 2021, 49(16): 227-233(in Chinese). doi: 10.15889/j.issn.1002-1302.2021.16.042
[26] 尹宇莹, 彭高卓, 谢意南, 等. 洞庭湖表层沉积物中营养元素、重金属的污染特征与评价分析 [J]. 环境化学, 2021, 40(8): 2399-2409. doi: 10.7524/j.issn.0254-6108.2020042401 YIN Y Y, PENG G Z, XIE Y N, et al. Characteristics and risk assessment of nutrients and heavy metals pollution in sediments of Dongting Lake [J]. Environmental Chemistry, 2021, 40(8): 2399-2409(in Chinese). doi: 10.7524/j.issn.0254-6108.2020042401
[27] 郑堃, 任宗玲, 覃小泉, 等. 韶关工矿区水稻土和稻米中重金属污染状况及风险评价 [J]. 农业环境科学学报, 2018, 37(5): 915-925. doi: 10.11654/jaes.2018-0224 ZHENG K, REN Z L, QIN X Q, et al. Status and risk assessment of heavy metal pollution in paddy soil and rice grains from the industrial and mining area of Shaoguan, Guangdong Province [J]. Journal of Agro-Environment Science, 2018, 37(5): 915-925(in Chinese). doi: 10.11654/jaes.2018-0224
[28] 李星谕, 毛瑶, 陈展乐, 等. 华中地区冬季灰霾天气下PM2.5中重金属污染特征及健康风险评价: 以湖北黄冈为例 [J]. 环境科学, 2021, 42(10): 4593-4601. LI X Y, MAO Y, CHEN Z L, et al. Characteristics and health risk assessment of heavy metals in PM2.5 under winter haze conditions in central China: A case study of Huanggang, Hubei Province [J]. Environmental Science, 2021, 42(10): 4593-4601(in Chinese).
[29] 谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤-农作物重金属空间变异特征与健康风险评价 [J]. 农业环境科学学报, 2019, 38(3): 544-554. doi: 10.11654/jaes.2018-1315 XIE T H, GUO J X, CHEN Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining area in Fujian Province, China [J]. Journal of Agro-Environment Science, 2019, 38(3): 544-554(in Chinese). doi: 10.11654/jaes.2018-1315
[30] 林承奇, 蔡宇豪, 胡恭任, 等. 闽西南土壤-水稻系统重金属生物可给性及健康风险 [J]. 环境科学, 2021, 42(1): 359-367. doi: 10.13227/j.hjkx.202005247 LIN C Q, CAI Y H, HU G R, et al. Bioaccessibility and health risks of the heavy metals in soil-rice system of southwest Fujian Province [J]. Environmental Science, 2021, 42(1): 359-367(in Chinese). doi: 10.13227/j.hjkx.202005247