-
水资源紧缺是全球面临的挑战,污水回用是缓解水资源紧缺的重要手段,而其中的关键问题是保障回用水质安全。污水回用主要包括生物处理工艺和深度处理工艺。生物处理主要去除氮、磷和有机物,常用的生物处理工艺包括厌氧好氧工艺(A/O),厌氧缺氧好氧工艺(A/A/O),膜生物反应器(MBR),UNITANK序批式活性污泥工艺和生物滤池等。深度处理工艺主要去除水中的微量有机污染物和杀灭水中的致病微生物,包括病原细菌、病毒及寄生虫卵等。目前污水回用中采用的深度处理工艺包括:氯、氯胺、二氧化氯、臭氧、紫外光照及紫外/过氧化氢等高级氧化(advanced oxidation process,AOP)工艺以及高铁酸盐、高锰酸盐等。
污水消毒是确保回用水水质安全的重要保障[1−2],在水消毒过程中,污水中含有的有机物,如腐殖酸、富里酸和微生物代谢物等与消毒剂发生氧化、加成、取代等反应生成消毒副产物,即DBPs[3−4]。研究表明,大部分DBPs具有潜在的致癌、致畸、致突变性[5−6],其中含氮DBPs具有比常规管制DBPs更高的毒性,目前新型含氮DBPs主要包括卤代乙腈、卤代硝基甲烷以及亚硝胺等[7-11]。
控制污水消毒过程中产生的DBPs是提高回用水水质安全的重要课题,目前对污水DBPs的控制手段主要包括前体物去除、消毒剂种类与投量控制,以及DBPs去除,本研究主要关注DBPs的前体物去除。污水中的有机物(effluent organic matters,EfOM)是DBPs的主要前体物,而因污水中的氨氮和EfOM含有的溶解性有机氮远远高于饮用水源,导致污水的消毒过程会产生大量的含氮的消毒副产物(N-DBPs)[12−13]。此外,污水中的无机离子,如溴离子在臭氧氧化过程中也会催化二甲基亚硝胺(N-Nitrosodimethylamine,NDMA)的生成[14]。
本研究旨在从污水回用角度出发,探究污水深度处理工艺对污水中消毒副产物及其前体物的去除效果。主要研究内容包括:(1)不同生物处理工艺(A/O,A/A/O,MBR,UNITANK,循环式活性污泥法(CAST), 氧化沟和生物滤池)对典型N-DBPs (包括亚硝胺类物质、卤乙腈和卤代硝基甲烷)的去除;(2)不同深度处理工艺(混凝沉淀,PAC,臭氧,二氧化氯,高铁酸盐氧化)对典型N-DBPs及其前体物的去除。
污水生物与深度处理技术对新型含氮消毒副产物及前体物的控制
Study on the control of emerging nitrogenous disinfection by-products and precursors by biological and advanced treatment for wastewater reclamation
-
摘要: 典型含氮消毒副产物(N-DBPs, 包括亚硝胺、卤乙腈和三氯硝基甲烷)的控制是污水回用过程中需关注的重点。本研究对采用不同生物处理工艺的污水厂进行生化池进出水中N-DBPs的存在水平分析,并选取其中一个污水厂的二级出水进行不同深度处理(粉末活性炭吸附、臭氧氧化、高铁酸盐氧化、二氧化氯氧化),研究其对N-DBPs及其前体物的去除。结果表明,生物处理过程会导致亚硝胺的生成。深度处理工艺中,粉末活性炭会催化亚硝胺的生成,臭氧氧化则会直接生成亚硝胺。选择的深度处理工艺对亚硝胺前体物均有去除,其中粉末活性炭和二氧化氯对二甲基亚硝胺和总亚硝胺的控制效果较好。但氧化工艺对卤乙腈(HANs)和三氯硝基甲烷(TCNM)的前体物影响不一,高铁酸盐对两者的前体物均有显著去除,二氧化氯会增加污水在低浓度氯胺处理时HANs的生成,臭氧氧化则会增加TCNM在后氯胺化过程中的生成。研究结果推动了污水深度处理技术的发展并为相关研究提供了理论指导。Abstract: The control of typical nitrogenous disinfection by-products (N-DBPs, including nitrosamines, haloacetonitriles and trichloronitromethane) is a major concern in wastewater reuse. In this study, the presence levels of N-DBPs in the influent and effluent of biochemical treatment in wastewater treatment plants (WWTPs) with different biological treatment processes were analyzed. The secondary effluent of one of the WWTPs was selected to investigate the removal of N-DBPs and their precursors in different advanced treatments (powdered activated carbon adsorption, ozone oxidation, ferrate oxidation, and chlorine dioxide oxidation). The results showed that the biological treatment process resulted in the generation of nitrosamines. For the advanced treatment processes, powdered activated carbon (PAC) catalyzed the generation of nitrosamines, while ozone oxidation formed nitrosamines directly. The selected advanced treatment processes showed different degrees of removal of nitrosamine precursors, with PAC and chlorine dioxide providing better control of N-nitrosodimethylamine and total nitrosamines. However, the oxidation processes had mixed effects on the precursors of haloacetonitriles (HANs) and trichloronitromethane (TCNM). Ferrate (FeVI) showed significant removal of precursors of both HANs and TCNM, while chlorine dioxide increased the formation of HANs in the effluent treated with low concentration of chloramine. Ozonation increased the generation of TCNM during post-chloramination. The results promote the development of advanced wastewater treatment technologies and provide theoretical guidance for related research.
-
表 1 样点污水处理厂基本信息
Table 1. Basic information of wastewater treatment plants in the research
污水厂编号
Number of wastewater
treatment plants污水处理能力(×104)/(m3·L−1)
Wastewater treatment
plant’s capacity采用的生物处理工艺
Biological treatment
processes生物处理类型
Type of biological
treatmentsA 10 A/O 完全硝化 B 10 A/A/O 完全硝化 C 20 Unitank 部分反硝化 D 10 A/A/O 弱硝化 E 10 CAST 完全硝化 F 5 Carrousel 2000氧化沟 完全反硝化 G 3 生物滤池 完全硝化 H 10 A/A/O 部分硝化 MBR 完全硝化 注Note:完全硝化Good nitrification:NH3 < 2 mg·L−1(按N算,下同), NO2− < 1 mg·L−1, NO3− > 10 mg·L−1。部分硝化Partial nitrification:NH3: 2—9 mg·L−1, NO3−: 2—10 mg·L−1。弱硝化Poor nitrification:NH3 > 9 mg·L−1, NO2− < 1 mg·L−1, NO3− < 2 mg·L−1。完全反硝化:NH3 < 2 mg·L−1, NO2− < 1 mg·L−1, NO3− < 5 mg·L−1。部分反硝化Partial denitrification:NH3 < 2 mg·L−1, NO3−: 5—10 mg·L−1. 表 2 8间水厂生物池进水与出水的基本水质参数
Table 2. Water parameters of influent and effluent of biological treatment processes in 8 WWTPs
编号
No.工艺
ProcesspH DOC/ (mg·L−1) NH3-N/(mg·L−1) Cl−/(µg·L−1) Br−/(µg·L−1) NO2−/(mg·L−1) NO3−/(mg·L−1) A1 A/O 7.3 14.5 19.8 21.0 196 0.0 4.4×10-4 A2 7.6 11.9 0.10 43.5 51.0 4.1×10-3 10 B1 A/A/O 7.2 28.0 15.7 11.8 61.6 0.0 5.2×10-4 B2 7.3 6.50 0.10 49.8 57.3 5.4×10-3 11 C1 UNITANK 7.4 11.2 10.3 27.9 48.0 7.5×10-2 6.4×10-3 C2 7.2 5.50 1.50 30.7 30.5 0.3 7.3 D1 A/A/O 7.3 16.8 21.7 63.0 50.7 3.1×10-3 0.0 D2 7.1 9.70 9.20 10.9 37.5 0.1 0.1 E1 CAST 7.3 23.5 14.5 28.0 45.6 3.8×10-3 0.0 E2 7.1 6.80 0.20 39.1 22.0 4.6×10-3 13 F1 Carrousel 2000 7.2 23.8 11.6 53.0 53.6 3.4×10-3 0.0 F2 7.4 8.40 0.20 44.3 30.1 1.9×10-3 3.0 G1 生物膜 7.5 9.50 6.20 34.0 56.1 0.3 6.6 G2 7.6 10.7 0.30 36.0 40.7 0.6 10 H1 MBR+
A/A/O7.8 22.7 23.6 47.1 60.9 8.3×10-3 5.3×10-4 H2 7.6 7.80 0.30 42.9 41.9 4.0×10-2 7.7 -
[1] LI Z G, LIU X Y, HUANG Z J, et al. Occurrence and ecological risk assessment of disinfection byproducts from chlorination of wastewater effluents in East China [J]. Water Research, 2019, 157: 247-257. doi: 10.1016/j.watres.2019.03.072 [2] LAZAROVA V, SAVOYE P, JANEX M L, et al. Advanced wastewater disinfection technologies: State of the art and perspectives [J]. Water Science and Technology, 1999, 40(4/5): 203-213. [3] MUNSON A E, SAIN L E, SANDERS V M, et al. Toxicology of organic drinking water contaminants: Trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane [J]. Environmental Health Perspectives, 1982, 46: 117-126. doi: 10.1289/ehp.8246117 [4] RICHARDSON S D. Disinfection by-products and other emerging contaminants in drinking water [J]. TrAC Trends in Analytical Chemistry, 2003, 22(10): 666-684. doi: 10.1016/S0165-9936(03)01003-3 [5] MILLS C J, BULL R J, CANTOR K P, et al. Workshop report. Health risks of drinking water chlorination by-products: Report of an expert working group [J]. Chronic Diseases in Canada, 1998, 19(3): 91-102. [6] SEDLAK D L, von GUNTEN U. Chemistry. The chlorine dilemma [J]. Science, 2011, 331(6013): 42-43. doi: 10.1126/science.1196397 [7] KIMURA S Y, KOMAKI Y, PLEWA M J, et al. Chloroacetonitrile and n, 2-dichloroacetamide formation from the reaction of chloroacetaldehyde and monochloramine in water [J]. Environmental Science & Technology, 2013, 47(21): 12382-12390. [8] CHUANG Y H, LIN A Y C, WANG X H, et al. The contribution of dissolved organic nitrogen and chloramines to nitrogenous disinfection byproduct formation from natural organic matter [J]. Water Research, 2013, 47(3): 1308-1316. doi: 10.1016/j.watres.2012.11.046 [9] PLEWA M J, WAGNER E D, MUELLNER M G, et al. Comparative mammalian cell toxicity of N-DBPs and C-DBPs[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2008: 36-50. [10] CHOI J, VALENTINE R L. Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: A new disinfection by-product [J]. Water Research, 2002, 36(4): 817-824. doi: 10.1016/S0043-1354(01)00303-7 [11] KRASNER S W, MCGUIRE M J, JACANGELO J G, et al. The occurrence of disinfection by-products in US drinking water [J]. Journal - American Water Works Association, 1989, 81(8): 41-53. doi: 10.1002/j.1551-8833.1989.tb03258.x [12] BARKER D J, STUCKEY D C. A review of soluble microbial products (SMP) in wastewater treatment systems [J]. Water Research, 1999, 33(14): 3063-3082. doi: 10.1016/S0043-1354(99)00022-6 [13] KRASNER S W, WESTERHOFF P, CHEN B Y, et al. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter [J]. Environmental Science & Technology, 2009, 43(8): 2911-2918. [14] TROGOLO D, MISHRA B K, HEEB M B, et al. Molecular mechanism of NDMA formation from N, N-dimethylsulfamide during ozonation: Quantum chemical insights into a bromide-catalyzed pathway [J]. Environmental Science & Technology, 2015, 49(7): 4163-4175. [15] BADER H, HOIGNÉ J. Determination of ozone in water by the indigo method [J]. Water Research, 1981, 15(4): 449-456. doi: 10.1016/0043-1354(81)90054-3 [16] THOMPSON G W, OCKERMAN L T, SCHREYER J M. Preparation and purification of potassium ferrate. VI [J]. Journal of the American Chemical Society, 1951, 73(3): 1379-1381. [17] LIU P, FARRÉ M J, KELLER J, et al. Reducing natural organic matter and disinfection by-product precursors by alternating oxic and anoxic conditions during engineered short residence time riverbank filtration: A laboratory-scale column study [J]. Science of the Total Environment, 2016, 565: 616-625. doi: 10.1016/j.scitotenv.2016.05.061 [18] WU M R, LIANG Y M, PENG H L, et al. Bioavailability of soluble microbial products as the autochthonous precursors of disinfection by-products in aerobic and anoxic surface water [J]. Science of the Total Environment, 2019, 649: 960-968. doi: 10.1016/j.scitotenv.2018.08.354 [19] ZENG T, MITCH W A. Impact of nitrification on the formation of N-nitrosamines and halogenated disinfection byproducts within distribution system storage facilities [J]. Environmental Science & Technology, 2016, 50(6): 2964-2973. [20] SHAH A D, MITCH W A. Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: A critical review of nitrogenous disinfection byproduct formation pathways [J]. Environmental Science & Technology, 2012, 46(1): 119-131. [21] SHAO B B, DONG H Y, SUN B, et al. Role of ferrate(IV) and ferrate(V) in activating ferrate(VI) by calcium sulfite for enhanced oxidation of organic contaminants [J]. Environmental Science & Technology, 2019, 53(2): 894-902. [22] EPA U. National primary drinking water standards[S]. 2002 [23] DAI N, ZENG T, MITCH W A. Predicting N-nitrosamines: N-nitrosodiethanolamine as a significant component of total N-nitrosamines in recycled wastewater [J]. Environmental Science & Technology Letters, 2015, 2(3): 54-58. [24] PADHYE L, TEZEL U, MITCH W A, et al. Occurrence and fate of nitrosamines and their precursors in municipal sludge and anaerobic digestion systems [J]. Environmental Science & Technology, 2009, 43(9): 3087-3093. [25] WIJEKOON K C, FUJIOKA T, MCDONALD J A, et al. Removal of N-nitrosamines by an aerobic membrane bioreactor [J]. Bioresource Technology, 2013, 141: 41-45. doi: 10.1016/j.biortech.2013.01.057 [26] TADKAEW N, HAI F I, MCDONALD J A, et al. Removal of trace organics by MBR treatment: The role of molecular properties [J]. Water Research, 2011, 45(8): 2439-2451. doi: 10.1016/j.watres.2011.01.023 [27] RALT D, TANNENBAUM S R. The role of bacteria in nitrosamine formation[M]//ACS Symposium Series. WASHINGTON D C: AMERICAN Chemical Society, 1981: 157-164. [28] GAN W H, BOND T, YANG X, et al. Role of chlorine dioxide in N-nitrosodimethylamine formation from oxidation of model amines [J]. Environmental Science & Technology, 2015, 49(19): 11429-11437. [29] PADHYE L, WANG P, KARANFIL T, et al. Unexpected role of activated carbon in promoting transformation of secondary amines to N-nitrosamines [J]. Environmental Science & Technology, 2010, 44(11): 4161-4168. [30] PADHYE L P, HERTZBERG B, YUSHIN G, et al. N-nitrosamines formation from secondary amines by nitrogen fixation on the surface of activated carbon [J]. Environmental Science & Technology, 2011, 45(19): 8368-8376. [31] OYA M, KOSAKA K, ASAMI M, et al. Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds [J]. Chemosphere, 2008, 73(11): 1724-1730. doi: 10.1016/j.chemosphere.2008.09.026 [32] SHEN R Q, ANDREWS S A. Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection [J]. Water Research, 2011, 45(2): 944-952. doi: 10.1016/j.watres.2010.09.036 [33] SCHMIDT C K, BRAUCH H J. N, N-dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment [J]. Environmental Science & Technology, 2008, 42(17): 6340-6346. [34] XU B, YE T, LI D P, et al. Measurement of dissolved organic nitrogen in a drinking water treatment plant: Size fraction, fate, and relation to water quality parameters [J]. Science of the Total Environment, 2011, 409(6): 1116-1122. doi: 10.1016/j.scitotenv.2010.12.016 [35] UZUN H, KIM D, KARANFIL T. The removal of N-nitrosodimethylamine formation potential in drinking water treatment plants [J]. Journal - American Water Works Association, 2017, 109(6): 15-28. [36] SELBES M, KIM D, KARANFIL T. The effect of pre-oxidation on NDMA formation and the influence of pH [J]. Water Research, 2014, 66: 169-179. doi: 10.1016/j.watres.2014.08.015 [37] LEE Y, von GUNTEN U. Oxidative transformation of micropollutants during municipal wastewater treatment: Comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrateVI, and ozone) and non-selective oxidants (hydroxyl radical) [J]. Water Research, 2010, 44(2): 555-566. doi: 10.1016/j.watres.2009.11.045 [38] YAO D C, CHU W H, BOND T, et al. Impact of ClO2 pre-oxidation on the formation of CX3R-type DBPs from tyrosine-based amino acid precursors during chlorination and chloramination [J]. Chemosphere, 2018, 196: 25-34. doi: 10.1016/j.chemosphere.2017.12.143 [39] YANG X, GUO W H, ZHANG X, et al. Formation of disinfection by-products after pre-oxidation with chlorine dioxide or ferrate [J]. Water Research, 2013, 47(15): 5856-5864. doi: 10.1016/j.watres.2013.07.010 [40] WANG A, LIN C S, SHEN Z, et al. Effects of pre-oxidation on haloacetonitrile and trichloronitromethane formation during subsequent chlorination of nitrogenous organic compounds [J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 1046. doi: 10.3390/ijerph17031046 [41] SHI J L, MCCURRY D L. Transformation of N-methylamine drugs during wastewater ozonation: Formation of nitromethane, an efficient precursor to halonitromethanes [J]. Environmental Science & Technology, 2020, 54(4): 2182-2191.