-
印染废水是将棉,麻,毛,丝等印染后排放的废水,含有染料、酸碱、纤维杂质、无机盐等物质[1],染料化合物广泛应用于纺织、皮革、造纸、食品、光电学电池和染发剂等技术领域[2]. 然而,由于其高含水量,高染料浓度,不可生物降解性,强碱性,水质变化大,在大规模生产和广泛应用中,合成染料使自然环境被破坏,导致水的透明度降低,阻碍阳光进入水体,同时消耗水体中的溶解氧,破坏水生生态平衡,危及水生生物的生存[3]. 罗丹明B (rhodamine B,RhB)是应用最广泛的染料之一,即使是低浓度的RhB废水,由于其毒性,致癌性,诱变性和不可生物降解性[4],仍然对人类健康和水生生物有害,因此,寻求一种效率高且对环境友好的新工艺迫在眉睫. 吸附,氧化,微生物降解等是常见的去除废水中RhB的方法,然而却无法完全去除RhB[5]. 近年来,基于活化过一硫酸盐(peroxymonosulfate,PMS)产生SO4·−的高级氧化技术已相当成熟,通常以过渡金属离子,UV照射,加热和碳基材料对PMS进行活化,可生成SO4·−[6]. 高能量的要求限制了热活化和UV活化的工业应用,而金属离子的浸出带来二次污染的风险. 因此,开发高效,环保的PMS活化剂势在必行.
金属有机框架材料(MOFs)通过自组装与桥接有机配体连接,形成一种具有周期性网络结构的多孔晶体材料;金属有机框架衍生多孔碳作为一种很有前景的非金属催化材料,因其高孔隙率,高比表面积和高耐化学性而备受关注[7].MOFs足够大的内部反应空间和高密度的活性位点促使原料和催化剂充分反应. 而石墨N对PMS[8]的活化起着重要作用,因此使用含氮MOFs直接碳化可制备得到氮自掺杂多孔碳材料. 此外,杂原子掺杂可以改变sp2杂化碳骨架的电子性质,从而增加催化位点,有利于促进PMS活化和电子转移[9]. 硼原子与碳原子拥有相近的原子半径与电负性,硼掺杂可以增加碳材料的比表面积,同时可以与氮原子形成耦合效应,进一步提高PMS活化性能[10].
本研究以ZIF-67为前驱体,在高温下构建硼氮共掺杂多孔碳材料(B-NC)高效活化PMS,该催化剂在最适条件下对目标污染物罗丹明B有良好的降解效果. 对催化剂的形貌和结构进行了测试分析,并对B-NC活化PMS降解RhB的各种影响参数进行了优化. 通过猝灭实验和自由基捕获实验解析了B-NC活化PMS降解RhB的机理,本文为碳材料活化PMS降解污染物提供了新策略.
硼氮共掺杂多孔碳活化过硫酸盐降解罗丹明B性能和机制
Performance and mechanism of boron-nitrogen co-doped porous carbon as permonosulfate activator for Rhodamine B degradation
-
摘要: 工业废水中有大量的合成染料,排放到环境中造成严重的健康风险,引起人们广泛关注. 以过一硫酸盐(PMS)为基础的高级氧化法是一种有效的印染废水处理方法. 传统的过渡金属活化PMS降解染料的方法受到金属离子溶出的限制. 碳基材料的催化活化能力有待进一步提升. 而多孔碳材料有利于暴露更多活性位点,且杂原子掺杂可以使其表面的带电粒子的分布发生改变,有助于形成活性位点和促进电子传递. 因此,本文以金属-有机骨架材料(MOF)为前驱体,通过高温热解等方法合成硼,氮共掺杂多孔碳基材料B-NC,并以罗丹明B(RhB)为目标降解污染物,提出采用ZIF-67衍生材料活化PMS处理RhB染料,并探究了不同因素对降解的影响. 结果表明, 在中性室温条件下,150 mL初始浓度为30 mg·L−1的RhB溶液中,当催化剂和 PMS投加量为5 mg时,硼氮掺杂多孔碳材料活化PMS降解RhB的效率可达到100%. 进一步分析降解RhB废水的机理,自由基猝灭实验结果表明硼氮掺杂多孔碳材料活化PMS过程中1O2自由基起主导作用,硼氮共掺杂促进了1O2的形成. 研究结果表明基于金属有机框架衍生材料B-NC是一种环境友好,性能高效的PMS活化剂,这为高效处理染料废水提供了一种新策略,并降低了二次污染风险.Abstract: There are a large number of synthetic dyes in industrial wastewater, which cause considerable serious health risks to the environment, and have attracted widespread attention. Advanced oxidation based on permonosulfate (PMS) is an effective treatment method for printing and dyeing wastewater. Traditional transition metal-activated PMS for dye degradation is limited by metal ion dissolution. The catalytic activation ability of carbon-based materials needs to be further improved. Porous carbon materials are conducive to exposing more active sites, and heteroatom doping can change the distribution of charged particles on their surface, which is helpful to form active sites and promote electron transport. Therefore, in this paper, boron and nitrogen co-doped porous carbon matrix composite B-NC was synthesized by high-temperature pyrolysis with metal-organic framework materials (MOF) as the precursor, and Rhodamine B (RhB) was used as the target to degrade pollutants. ZIF-67 derived material was used to activate PMS to treat RhB dye, and the effects of different factors on degradation were investigated. The results showed that the degradation efficiency of RhB by BN-doped porous carbon material can reach 100% when the catalyst and PMS dosage was 5 mg in 150 mL RhB solution with an initial concentration of 30 mg·L−1 at neutral room temperature. The mechanism of degradation of RhB wastewater was further analyzed. The results of free radical quenching experiment showed that 1O2 radical played a leading role in the process of PMS activation by boron-nitrogen doped porous carbon materials, and the formation of 1O2 was promoted by boron-nitrogen co-doping. The results showed that metal-organic frame-derived material B-NC was an environmentally friendly and efficient PMS activator, which provided a new strategy for the efficient treatment of dye wastewater and reduces the risk of secondary pollution.
-
Key words:
- Peroxymonosulfate /
- Rhodamine B /
- Singlet oxygen /
- Metal-organic frameworks
-
表 1 非金属碳质材料及其PMS活化性能比较
Table 1. Comparison of metal-free carbonaceous materials and their PMS activation performance.
催化剂
Catalyst污染物
Pollutants去除效率
Efficiency of removal活性物种
Active species稳定性
Stability文献引用
Ref.NG-600/ PMS 10 mg·L−1 SAM 50 min后100% SO4·- 循环3次后50 min内降解率58% [16] N-IrGO/ PMS 5 mg·L−1 BP-1 60 min后100% 1O2 循环3次后60 min内降解率50% [17] NBC-900/ PDS 20 mg·L−1 SMX 45 min后100% 电子转移 循环3次后90 min内降解率42.51% [18] PGBF-N/ PMS 20 mg·L−1 TC 150 min后96.5% 1O2和电子转移 循环4次后150 min内降解率60% [19] PFSC-900/PMS 20 mg·L−1TC 120 min后90.91% 1O2主导 循环8次后120 min内降解率80% [14] CNTs/PS 20 mg·L−1RhB 150 min后100% SO4·-、·OH和电子转移 循环3次后210 min内降解率72.9% [20] B-NC/PMS 30 mg·L−1 RhB 60 min后100% 1O2、SO4·-、·OH 循环5次后60 min内降解率84.21% 本研究 表 2 反应前后pH的变化
Table 2. Change of solution pH before and after reaction
pH 反应前 3 4 5 7 9 11 反应后 2.87 3.58 3.82 6.80 7.90 10.64 -
[1] LIU Z C, KHAN T A, ISLAM M A, et al. A review on the treatment of dyes in printing and dyeing wastewater by plant biomass carbon [J]. Bioresource Technology, 2022, 354: 127168. doi: 10.1016/j.biortech.2022.127168 [2] WALKER G M, WEATHERLEY L R. Textile wastewater treatment using granular activated carbon adsorption in fixed beds [J]. Separation Science and Technology, 2000, 35(9): 1329-1341. doi: 10.1081/SS-100100227 [3] MARTÍNEZ-HUITLE C A, BRILLAS E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review [J]. Applied Catalysis B:Environmental, 2009, 87(3/4): 105-145. [4] RASALINGAM S, PENG R, KOODALI R T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials [J]. Applied Catalysis B:Environmental, 2015, 174/175: 49-59. doi: 10.1016/j.apcatb.2015.02.040 [5] SHARMA G, DIONYSIOU D D, SHARMA S, et al. Highly efficient Sr/Ce/activated carbon bimetallic nanocomposite for photoinduced degradation of rhodamine B [J]. Catalysis Today, 2019, 335: 437-451. doi: 10.1016/j.cattod.2019.03.063 [6] LIU N, DING F, WENG C H, et al. Minimizing the interference of carbonate ions on degradation of SRF3B dye by Fe0-aggregate-activated persulfate process [J]. Separation and Purification Technology, 2016, 169: 230-240. doi: 10.1016/j.seppur.2016.05.039 [7] ZHANG M, LUO R, WANG C H, et al. Confined pyrolysis of metal-organic frameworks to N-doped hierarchical carbon for non-radical dominated advanced oxidation processes [J]. Journal of Materials Chemistry A, 2019, 7(20): 12547-12555. doi: 10.1039/C9TA02931A [8] WANG G L, CHEN S, QUAN X, et al. Enhanced activation of peroxymonosulfate by nitrogen doped porous carbon for effective removal of organic pollutants [J]. Carbon, 2017, 115: 730-739. doi: 10.1016/j.carbon.2017.01.060 [9] XIE J L, LUO X, CHEN L, et al. ZIF-8 derived boron, nitrogen co-doped porous carbon as metal-free peroxymonosulfate activator for tetracycline hydrochloride degradation: Performance, mechanism and biotoxicity [J]. Chemical Engineering Journal, 2022, 440: 135760. doi: 10.1016/j.cej.2022.135760 [10] GAO S W, WANG Z, WANG H R, et al. Peroxydisulfate activation using B-doped biochar for the degradation of oxytetracycline in water [J]. Applied Surface Science, 2022, 599: 153917. doi: 10.1016/j.apsusc.2022.153917 [11] HOU W X, HUANG Y, LIU X. Highly efficient and recyclable ZIF-67 catalyst for the degradation of tetracycline [J]. Catalysis Letters, 2020, 150(10): 3017-3022. doi: 10.1007/s10562-020-03210-2 [12] GONG Y, ZHAO X, ZHANG H, et al. MOF-derived nitrogen doped carbon modified g-C3N4 heterostructure composite with enhanced photocatalytic activity for bisphenol A degradation with peroxymonosulfate under visible light irradiation [J]. Applied Catalysis B:Environmental, 2018, 233: 35-45. doi: 10.1016/j.apcatb.2018.03.077 [13] LONG Y H, LI S R, YANG P Z, et al. Synthesis of ZIF-67 derived honeycomb porous Co/NC catalyst for AO7 degradation via activation of peroxymonosulfate [J]. Separation and Purification Technology, 2022, 286: 120470. doi: 10.1016/j.seppur.2022.120470 [14] HU Y, CHEN D Z, ZHANG R, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway [J]. Journal of Hazardous Materials, 2021, 419: 126495. doi: 10.1016/j.jhazmat.2021.126495 [15] LI X J, YE Z Y, XIE S H, et al. Insight into the performance and mechanism of peroxymonosulfate activation by B, N co-doped hierarchical porous carbon for phenol degradation [J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108264. doi: 10.1016/j.jece.2022.108264 [16] CHEN X, OH W D, HU Z T, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes [J]. Applied Catalysis B:Environmental, 2018, 225: 243-257. doi: 10.1016/j.apcatb.2017.11.071 [17] SUN P, LIU H, ZHAI Z C, et al. Degradation of UV filter BP-1 with nitrogen-doped industrial graphene as a metal-free catalyst of peroxymonosulfate activation [J]. Chemical Engineering Journal, 2019, 356: 262-271. doi: 10.1016/j.cej.2018.09.023 [18] HO S H, CHEN Y D, LI R X, et al. N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation [J]. Water Research, 2019, 159: 77-86. doi: 10.1016/j.watres.2019.05.008 [19] YE S J, ZENG G M, TAN X F, et al. Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer [J]. Applied Catalysis B:Environmental, 2020, 269: 118850. doi: 10.1016/j.apcatb.2020.118850 [20] CHEN S H, MA L Y, DU Y G, et al. Highly efficient degradation of rhodamine B by carbon nanotubes-activated persulfate [J]. Separation and Purification Technology, 2021, 256: 117788. doi: 10.1016/j.seppur.2020.117788 [21] 杨珂, 唐琪, 杨晓丹, 等. 铁酸铜非均相活化过硫酸盐降解罗丹明B [J]. 中国环境科学, 2019, 39(9): 3761-3769. doi: 10.3969/j.issn.1000-6923.2019.09.020 YANG K, TANG Q, YANG X D, et al. Degradation of rhodamine B by heterogeneous activation of persulfate with copper ferrate [J]. China Environmental Science, 2019, 39(9): 3761-3769(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.09.020
[22] 王渊源, 阎鑫, 艾涛, 等. 碳化泡沫负载Co3O4活化过硫酸盐降解罗丹明B [J]. 环境科学, 2022, 43(4): 2039-2046. WANG Y Y, YAN X, AI T, et al. Carbonized foam supported Co3O4 activated peroxymonosulfate towards rhodamine B degradation [J]. Environmental Science, 2022, 43(4): 2039-2046(in Chinese).
[23] WANG G L, LIU Y C, DONG X L, et al. Transforming radical to non-radical pathway in peroxymonosulfate activation on nitrogen doped carbon sphere for enhanced removal of organic pollutants: Combined effect of nitrogen species and carbon structure [J]. Journal of Hazardous Materials, 2022, 437: 129357. doi: 10.1016/j.jhazmat.2022.129357 [24] del RIO M, GRIMALT ESCARABAJAL J C, TURNES PALOMINO G, et al. Zinc/Iron mixed-metal MOF-74 derived magnetic carbon nanorods for the enhanced removal of organic pollutants from water [J]. Chemical Engineering Journal, 2022, 428: 131147. doi: 10.1016/j.cej.2021.131147 [25] SILVESTRI D, KRAWCZYK K, PAWLYTA M, et al. Influence of catalyst zeta potential on the activation of persulfate [J]. Chemical Communications (Cambridge, England), 2021, 57(63): 7814-7817. doi: 10.1039/D1CC01946E [26] 邓靖, 冯善方, 马晓雁, 等. 热活化过硫酸盐降解水中卡马西平 [J]. 化工学报, 2015, 66(1): 410-418. DENG J, FENG S F, MA X Y, et al. Degradation of carbamazepine in water by thermally activated persulfate [J]. CIESC Journal, 2015, 66(1): 410-418(in Chinese).
[27] 王莹, 魏成耀, 黄天寅, 等. 氮掺杂碳纳米管活化过一硫酸盐降解酸性橙AO7 [J]. 中国环境科学, 2017, 37(7): 2583-2590. WANG Y, WEI C Y, HUANG T Y, et al. Activation of peroxymonosulfate by nitrogen-doped carbon nanotubes to decolorize acid orange 7 [J]. China Environmental Science, 2017, 37(7): 2583-2590(in Chinese).
[28] ZHU K, SHEN Y Q, HOU J M, et al. One-step synthesis of nitrogen and sulfur co-doped mesoporous graphite-like carbon nanosheets as a bifunctional material for tetracycline removal via adsorption and catalytic degradation processes: Performance and mechanism [J]. Chemical Engineering Journal, 2021, 412: 128521. doi: 10.1016/j.cej.2021.128521 [29] LIU B H, GUO W Q, WANG H Z, et al. B-doped graphitic porous biochar with enhanced surface affinity and electron transfer for efficient peroxydisulfate activation [J]. Chemical Engineering Journal, 2020, 396: 125119. doi: 10.1016/j.cej.2020.125119 [30] XIE J L, CHEN L, LUO X, et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B, N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism [J]. Separation and Purification Technology, 2022, 281: 119887. doi: 10.1016/j.seppur.2021.119887 [31] GUO Y X, YAN L G, LI X G, et al. Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation: Inherent roles of radical and non-radical processes [J]. Science of the Total Environment, 2021, 783: 147102. doi: 10.1016/j.scitotenv.2021.147102 [32] RINALDUCCI S, PEDERSEN J Z, ZOLLA L. Generation of reactive oxygen species upon strong visible light irradiation of isolated phycobilisomes from Synechocystis PCC 6803 [J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2008, 1777(5): 417-424. doi: 10.1016/j.bbabio.2008.02.005 [33] JIANG L L, ZHANG Y, ZHOU M H, et al. Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism [J]. Journal of Hazardous Materials, 2018, 358: 53-61. doi: 10.1016/j.jhazmat.2018.06.048 [34] LIU S Q, ZHANG Z C, HUANG F, et al. Carbonized polyaniline activated peroxymonosulfate (PMS) for phenol degradation: Role of PMS adsorption and singlet oxygen generation [J]. Applied Catalysis B:Environmental, 2021, 286: 119921. doi: 10.1016/j.apcatb.2021.119921 [35] CHOONG Z Y, LIN K Y A, LISAK G, et al. Multi-heteroatom-doped carbocatalyst as peroxymonosulfate and peroxydisulfate activator for water purification: A critical review [J]. Journal of Hazardous Materials, 2022, 426: 128077. doi: 10.1016/j.jhazmat.2021.128077