-
岩石风化成土作用是地球关键带最重要的过程之一,土壤作为岩石风化的产物,是农作物生产的物质基础,更是人类赖以生存的自然资源. 随着工业化和城市化的快速推进,我国土壤重金属污染问题已经日益凸显. 重金属元素具有强毒性、生物富集性和难降解性等特点,环境介质中过高的重金属含量不仅会影响生态系统的正常运转,同时也会增加人类健康风险,甚至导致一些地方病如痛痛病[1 − 2].
在现代化进程下,人为源输入(如汽车尾气、采矿选冶、农业活动和工业排放等)已经成为土壤重金属污染的主导因素[3 − 5]. 但是近年来,在一些重金属地球化学高背景区域,自然输入导致的环境介质中重金属浓度升高的报道日益增多[6 − 10]. 在我国西南地区,地质过程是导致土壤重金属富集的一个重要因素. 该地区广泛发育碳酸盐岩,是我国典型的重金属地球化学高背景区,碳酸盐岩特殊的风化成土过程使得风化土壤明显具有基岩的地球化学继承性,重金属元素趋于残积在风化土壤中,从而导致风化土壤重金属超标[11 − 12]. 我国西南地区也分布有大范围的黑色页岩,它是一类形成于还原环境中的特殊细粒沉积岩,通常富集硫化物、有机质和多种重金属元素[13 − 14]. 这类岩石暴露于地表氧化环境中极易发生化学风化作用,使得重金属元素发生淋滤析出,进入土壤和水体中而成为潜在的重金属污染源[15]. 已有研究对我国湖南、贵州、广西和重庆等地区黑色页岩的风化成土过程、风化土壤重金属元素的富集特征和地球化学形态等方面进行了报道[16 − 20].
重庆东北部地区位于扬子地台与秦岭造山带的过渡地段,强烈的构造抬升活动使得区内黑色页岩长期暴露在地表氧化环境中并发生化学风化. 该地区属于山地地貌,可用耕地极为有限,农业生产基本依靠黑色页岩风化形成的残坡积土壤进行. 因此对于该地区黑色页岩风化土壤中重金属富集特征和健康风险评价的研究就显得迫切而重要. 虽然已有学者对重庆东北部巫山、城口地区部分流域内的黑色页岩风化土壤—玉米作物系统中重金属含量、形态及分馏特征进行了研究[17 − 18, 21 − 23],但是这些研究的采样范围较为局限,由于黑色页岩具有极不均一的地球化学组成,单一的小流域采样很难具有代表性,且缺乏对于风化土壤重金属元素的健康风险评价,尤其是基于元素含量和化学形态. 因此,本文围绕城口地区下寒武统黑色页岩流域,系统性采集黑色页岩风化土壤样品,阐明黑色页岩风化土壤重金属元素的富集特征,基于重金属元素的含量和和地球化学形态开展健康风险评价,旨在为地球化学高背景区下土壤重金属元素的污染防控管理提供有力的理论支撑和依据.
重庆城口地区黑色页岩风化土壤重金属元素的富集特征和健康风险评价
Enrichment characteristic and health risk assessment of heavy metals in soils derived from black shale in Chengkou area, Chongqing
-
摘要: 通过对重庆城口地区黑色页岩风化土壤进行系统采样,分析风化土壤重金属元素的含量组成和化学形态,探讨风化土壤重金属元素的富集特征,基于元素含量和化学形态开展人类健康风险评价. 结果表明,研究区黑色页岩风化土壤中多种重金属元素的平均含量都超过中国土壤背景值,甚至超过农用地的风险管控值,表现出不同程度的重金属元素富集特征,尤其是Mo、Cd、As和Tl. 致癌风险评价模型结果表明,As对于儿童和成人的大部分TCR值都超过风险安全限,Cr对于儿童和成人的绝大部分TCR值介于风险筛选值和风险安全限之间,少部分TCR值超过风险安全限,Pb对于儿童和成人的TCR值都小于风险筛选值. 致癌元素地球化学形态萃取结果显示,土壤中As(92.53%—99.51%)、Cr(89.22%—97.87%)和Pb(62.59%—89.74%)主要以残余态的形式存在,具有很低的生物利用度和可给性,表明土壤中As、Cr和Pb对人类产生的致癌风险可以忽略不计. 但是,土壤中Cd主要以可交换态(13.04%—36.82%)、碳酸盐结合态(18.69%—30.11%)和铁锰氧化物结合态(17.79%—31.07%)的形式存在,表现出较高的生物可获得性. 由于Cd的TCR值均超过风险筛选值,且部分TCR值接近甚至超过风险安全限值. 因此,研究区黑色页岩风化土壤中Cd可能对人类产生潜在的致癌风险,需要引起关注和重视.Abstract: Soils derived from black shale weathering in Chengkou area, Chongqing were sampled and analyzed for concentration and geochemical speciation of heavy metals to investigate enrichment characteristic and human health risk assessment. The results indicate that elevated concentrations of most heavy metals in the soils underlain by black shale exceed the national soil background values, even the risk screening values, especially for Mo, Cd, As and Tl. The results of carcinogenic risk assessment model show that most of the TCR values of As for children and adults exceed the risk safety limit; most of the TCR values of Cr for children and adults fall into the range of the risk screening value and the risk safety limit, with a few TCR values exceeding the risk safety limit; all the TCR values of Pb for children and adults are less than the risk screening value. Sequential extraction of carcinogenic elements shows that As (92.53%—99.51%), Cr (89.22%—97.87%) and Pb (62.59%—89.74%) in soils mainly exist in residual faction that is difficult to be directly available by organisms, indicating that the carcinogenic risks from As, Cr and Pb in soils are negligible. However, Cd mainly exists in exchangeable fraction (13.04%—36.82%), carbonate fraction (18.69%—30.11%) and Fe-Mn oxide fraction (17.79%—31.07%) in soils, showing high bio-availability. Because the total carcinogenic risk TCR values of Cd exceed the risk screening value, and some of the TCR values are close to or even exceed the risk safety limit. Therefore, Cd in our studied soils may pose potential carcinogenic risks to local humans.
-
Key words:
- black shale soil /
- heavy metal /
- enrichment characteristic /
- geochemical speciation /
- carcinogenic risk.
-
表 1 研究区黑色页岩风化土壤重金属元素的含量(mg·kg−1)
Table 1. Heavy metal concentrations (mg·kg−1) of black shale weathering soils of the study area
As Cd Co Cr Cu Ni Pb Zn Mo Tl CKS-1 62.50 13.45 19.50 99.00 146.00 301.00 52.30 554.00 86.20 5.57 CKS-2 25.60 0.09 4.90 65.00 28.20 17.00 25.60 37.00 15.65 1.16 CKS-3 33.60 2.74 15.00 95.00 60.40 122.50 24.60 244.00 49.40 3.21 CKS-4 52.60 11.35 16.20 321.00 171.50 126.00 36.90 426.00 75.60 2.69 CKS-5 24.40 0.53 12.40 78.00 30.50 51.00 17.20 101.00 19.80 1.67 CKS-6 25.80 0.72 23.10 84.00 38.10 71.90 19.10 117.00 22.90 1.79 CKS-7 26.60 0.84 17.90 86.00 38.80 58.80 20.00 124.00 22.00 1.76 CKS-8 30.20 0.35 9.60 93.00 46.40 43.60 20.70 64.00 25.10 1.72 CKS-9 51.80 7.53 33.30 154.00 169.00 461.00 34.10 800.00 61.00 6.68 CKS-10 51.30 0.97 17.30 77.00 118.50 98.60 28.00 223.00 3.86 0.71 CKS-11 32.00 0.05 1.60 86.00 30.60 5.90 23.90 17.00 11.00 0.62 CKS-12 44.30 0.53 10.90 111.00 66.40 59.90 17.90 147.00 7.87 0.60 CKS-13 45.10 1.63 8.40 126.00 81.40 168.00 22.10 330.00 38.50 1.87 CKS-14 38.20 0.25 20.10 97.00 113.00 46.30 30.10 205.00 8.01 0.86 CKS-15 33.40 1.95 34.20 90.00 57.50 130.50 25.70 191.00 41.40 4.22 CKS-16 23.10 0.28 9.00 64.00 38.60 47.70 15.80 107.00 30.60 1.91 CKS-17 29.50 1.46 9.60 122.00 54.70 54.40 24.50 191.00 15.85 1.30 CKS-18 19.80 0.16 8.70 72.00 27.50 34.70 17.00 81.00 12.25 1.04 CKS-19 25.10 0.14 15.40 66.00 32.50 46.90 22.10 96.00 9.66 1.21 CKS-20 23.90 0.49 9.00 96.00 33.00 23.10 28.00 65.00 8.13 0.71 CKS-21 97.40 0.20 2.70 129.00 163.00 47.60 28.40 33.00 7.78 1.23 CKS-22 43.10 0.08 1.50 90.00 61.60 5.50 58.90 18.00 20.80 0.93 CKS-23 30.20 1.11 21.20 87.00 47.30 124.00 19.80 196.00 41.60 3.48 CKS-24 26.40 0.50 17.70 79.00 42.80 94.20 16.40 138.00 25.00 3.49 CKS-25 58.10 1.35 36.60 127.00 71.40 136.50 19.80 186.00 107.00 5.36 CKS-26 24.60 0.90 16.80 85.00 41.20 98.40 19.00 150.00 28.70 1.97 CKS-27 30.80 0.10 8.00 53.00 24.10 21.70 40.00 52.00 7.57 0.69 CKS-28 32.80 0.06 3.30 71.00 34.90 9.80 31.60 25.00 9.04 0.62 CKS-29 87.40 0.43 47.40 117.00 163.00 241.00 39.00 459.00 15.90 1.04 CKS-30 25.50 0.10 1.90 93.00 16.60 7.10 25.10 19.00 7.58 0.61 CKS-31 28.30 1.83 20.80 99.00 63.10 60.80 27.50 139.00 12.35 0.87 CKS-32 52.30 1.76 19.00 131.00 79.80 149.50 24.10 244.00 46.20 4.93 CKS-33 39.60 2.02 24.40 106.00 80.60 210.00 24.60 358.00 57.20 4.33 最小值 19.80 0.05 1.50 53.00 16.60 5.50 15.80 17.00 3.86 0.60 最大值 97.40 13.45 47.40 321.00 171.50 461.00 58.90 800.00 107.00 6.68 平均值 38.65 1.70 15.68 101.48 68.85 96.21 26.66 185.97 28.83 2.15 CV(%) 46.45 181.86 68.84 44.81 67.71 99.90 36.78 92.93 87.22 78.67 土壤背景值[29] 9.20 0.07 11.20 53.90 20.00 23.40 23.60 67.70 1.20 0.58 风险筛选值[30] 40.00 0.30 — 150.00 50.00 60.00 70.00 200.00 — — 风险管制值[30] 150.00 1.50 — 800.00 — — 400.00 — — — 表 2 健康风险评价模型参数
Table 2. Parameters for health risk assessment model
缩写 含义
Meaning数值
Value来源
ReferenceABSd 重金属元素的皮肤吸收因子 As取0.03,其它元素取0.001 [39] ATca 致癌性暴露时间 (d) LT×365 [40] C 土壤重金属元素含量 (mg·kg−1) — DFSadj 土壤的皮肤吸收因子 362 [41] ED 暴露持续时间 (a) 儿童和成人分别为6和30 [40] EF 暴露频率 (d·a−1) 350 ET 暴露时间 (h·d−1) 24 IngRadj 随年龄调整的土壤摄入率 (mg·d−1) 113 [41] LT 生命周期 (a) 77 [42] PEF 土壤颗粒释放因子 (m3·kg−1) 1.36×109 [39] -
[1] AOSHIMA K. Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium—Historical review and perspectives[J]. Soil Science and Plant Nutrition, 2016, 62(4): 319-326. doi: 10.1080/00380768.2016.1159116 [2] ZHAO Q H, WANG Y, CAO Y, et al. Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui Province, Eastern China[J]. Science of the Total Environment, 2014, 470/471: 340-347. doi: 10.1016/j.scitotenv.2013.09.086 [3] 蔡立梅, 马瑾, 周永章, 等. 东莞市农业土壤重金属的空间分布特征及来源解析[J]. 环境科学, 2008, 29(12): 3496-3502. doi: 10.3321/j.issn:0250-3301.2008.12.034 CAI L M, MA J, ZHOU Y Z, et al. Multivariate geostatistics and GIS-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China[J]. Environmental Science, 2008, 29(12): 3496-3502(in Chinese). doi: 10.3321/j.issn:0250-3301.2008.12.034
[4] 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7): 971-984. LU J S, ZHANG Z L, LIU Y, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao city[J]. Acta Geographica Sinica, 2012, 67(7): 971-984(in Chinese).
[5] 张连科, 李海鹏, 黄学敏, 等. 包头某铝厂周边土壤重金属的空间分布及来源解析[J]. 环境科学, 2016, 37(3): 1139-1146. ZHANG L K, LI H P, HUANG X M, et al. Soil heavy metal spatial distribution and source analysis around an aluminum plant in Baotou[J]. Environmental Science, 2016, 37(3): 1139-1146(in Chinese).
[6] 谢淑容, 彭渤, 唐晓燕, 等. 湘中地区发育于黑色页岩上的土壤重金属污染特征[J]. 土壤通报, 2008, 39(1): 137-142. XIE S R, PENG B, TANG X Y, et al. Characteristics of heavy metal contamination of soils derived from black shale in the contral Hunan, China[J]. Chinese Journal of Soil Science, 2008, 39(1): 137-142(in Chinese).
[7] 余昌训, 彭渤, 唐晓燕, 等. 湘中下寒武统黑色页岩土壤的地球化学特征[J]. 土壤学报, 2009, 46(4): 557-570. doi: 10.3321/j.issn:0564-3929.2009.04.001 YU C X, PENG B, TANG X Y, et al. Geochemical characteristics of soils derived from the lower-Cambrian black shales distributed in central Hunan, China[J]. Acta Pedologica Sinica, 2009, 46(4): 557-570(in Chinese). doi: 10.3321/j.issn:0564-3929.2009.04.001
[8] PARK M, CHON H T, MARTON L. Mobility and accumulation of selenium and its relationship with other heavy metals in the system rocks/soils–crops in areas covered by black shale in Korea[J]. Journal of Geochemical Exploration, 2010, 107(2): 161-168. doi: 10.1016/j.gexplo.2010.09.003 [9] QUEZADA-HINOJOSA R P, FÖLLMI K B, VERRECCHIA E, et al. Speciation and multivariable analyses of geogenic cadmium in soils at Le Gurnigel, Swiss Jura Mountains[J]. CATENA, 2015, 125: 10-32. doi: 10.1016/j.catena.2014.10.003 [10] LIU Y Z, XIAO T F, PERKINS R B, et al. Geogenic cadmium pollution and potential health risks, with emphasis on black shale[J]. Journal of Geochemical Exploration, 2017, 176: 42-49. doi: 10.1016/j.gexplo.2016.04.004 [11] WEN Y B, LI W, YANG Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245: 125620. doi: 10.1016/j.chemosphere.2019.125620 [12] XIA X Q, JI J F, YANG Z F, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254: 126799. doi: 10.1016/j.chemosphere.2020.126799 [13] 范德廉, 杨秀珍, 王连芳, 等. 某地下寒武统含镍钼多元素黑色岩系的岩石学及地球化学特点[J]. 地球化学, 1973, 2(3): 143-164. FAN T L, YANG H C, WANG L F, et al. Petrological and geochemical characteristics of a nickel-molybdenum-multe-element-bearing-lower-Cambrian black shale from a certain district in South China[J]. Geochimica, 1973, 2(3): 143-164(in Chinese).
[14] 吴朝东, 杨承运, 陈其英. 湘西黑色岩系地球化学特征和成因意义[J]. 岩石矿物学杂志, 1999, 18(1): 26-39. WU C D, YANG C Y, CHEN Q Y, et al. The origin and geochemical characteristics of Upper Sinain-Lower Cambrian black shales in western Hunan[J]. Acta Petrologica et Mineralogica, 1999, 18(1): 26-39(in Chinese).
[15] PARVIAINEN A, LOUKOLA-RUSKEENIEMI K. Environmental impact of mineralised black shales[J]. Earth-Science Reviews, 2019, 192: 65-90. doi: 10.1016/j.earscirev.2019.01.017 [16] 彭渤, 唐晓燕, 余昌训, 等. 湘中HJC铀矿区黑色页岩土壤重金属污染地球化学分析[J]. 地质学报, 2009, 83(1): 89-106. doi: 10.3321/j.issn:0001-5717.2009.01.009 PENG B, TANG X Y, YU C X, et al. Geochemical study of heavy metal contamination of soils derived from black shales at the HJC uranium mine in central Hunan, China[J]. Acta Geologica Sinica, 2009, 83(1): 89-106(in Chinese). doi: 10.3321/j.issn:0001-5717.2009.01.009
[17] 刘意章, 肖唐付, 宁增平, 等. 三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究[J]. 环境科学, 2013, 34(6): 2390-2398. LIU Y Z, XIAO T F, NING Z P, et al. Cadmium and selected heavy metals in soils of Jianping area in Wushan County, the Three Gorges region: Distribution and source recognition[J]. Environmental Science, 2013, 34(6): 2390-2398(in Chinese).
[18] 刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6): 2877-2884. LIU Y Z, XIAO T F, XIONG Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, southwestern China[J]. Environmental Science, 2019, 40(6): 2877-2884(in Chinese).
[19] DUAN Y R, YANG Z F, YU T, et al. Geogenic cadmium pollution in multi-medians caused by black shales in Luzhai, Guangxi[J]. Environmental Pollution, 2020, 260: 113905. doi: 10.1016/j.envpol.2019.113905 [20] XU Y Y, YANG R D, ZHANG J, et al. Distribution and dispersion of heavy metals in the rock–soil–moss system of the black shale areas in the southeast of Guizhou Province, China[J]. Environmental Science and Pollution Research, 2022, 29(1): 854-867. doi: 10.1007/s11356-021-15335-x [21] 陈梓杰, 肖唐付, 刘意章, 等. 典型黑色岩系地质高背景区农田土壤-玉米系统重金属富集特征[J]. 生态学杂志, 2021, 40(8): 2315-2323. CHEN Z J, XIAO T F, LIU Y Z, et al. Accumulation of heavy metals in agricultural soils and maize in a typical black shale area with high geochemical background[J]. Chinese Journal of Ecology, 2021, 40(8): 2315-2323(in Chinese).
[22] LIU Y Z, XIAO T F, ZHU Z J, et al. Geogenic pollution, fractionation and potential risks of Cd and Zn in soils from a mountainous region underlain by black shale[J]. Science of the Total Environment, 2021, 760: 143426. doi: 10.1016/j.scitotenv.2020.143426 [23] 王锐, 邓海, 贾中民, 等. 地质高背景区土壤及玉米中重金属的含量及污染评价—以城口县为例[J]. 生态环境学报, 2021, 30(4): 841-848. WANG R, DENG H, JIA Z M, et al. Concentration and pollution evaluation of heavy metals in soil and corn in high geological background area: Taking Chengkou county as an example[J]. Ecology and Environmental Sciences, 2021, 30(4): 841-848(in Chinese).
[24] WEI W, LI X N, LING S X, et al. Heavy metal(loid) and Pb isotope compositions of black shale weathering profiles on the northern Yangtze Platform: insights into geochemical behavior, contamination assessment and source apportionment[J]. Environmental Science and Pollution Research, 2021, 28: 50230-50244. doi: 10.1007/s11356-021-14234-5 [25] 巫锡勇, 凌斯祥, 任勇, 等. 渝东北黑色页岩元素迁移特征及化学风化程[J]. 地球科学, 2016, 41(2): 218-233. WU X Y, LING S X, REN Y, et al. Elemental migration characteristics and chemical weathering degree of black shale in northeast Chongqing, China[J]. Earth Science, 2016, 41(2): 218-233(in Chinese).
[26] WEI W, LING S X, WU X Y, et al. Investigations on mineralogy and geochemistry of a black shale profile on the northern Yangtze platform, China: Weathering fate of rare earth elements and yttrium (REY) and its implications[J]. Applied Geochemistry, 2021, 126: 104897. doi: 10.1016/j.apgeochem.2021.104897 [27] TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017 [28] 中华人民共和国生态环境部. 《土壤环境监测技术规范》(HJ/T 166-2004)[S], 2004. [29] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991, 12(4): 12-19, 94. doi: 10.13227/j.hjkx.1991.04.005 WEI F S, CHEN J S, WU Y Y, et al. Study on the background contents on 61 elements of soils in China[J]. Environmental Science, 1991, 12(4): 12-19, 94(in Chinese). doi: 10.13227/j.hjkx.1991.04.005
[30] 生态环境部, 国家市场监督管理总局. 土壤环境质量农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: Standards Press of China(in Chinese).
[31] LEE J S, CHON H T, KIM K W. Migration and dispersion of trace elements in the rock–soil–plant system in areas underlain by black shales and slates of the Okchon Zone, Korea[J]. Journal of Geochemical Exploration, 1998, 65(1): 61-78. doi: 10.1016/S0375-6742(98)00054-5 [32] MULLER G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108-118. [33] USEPA (United States Environmental Protection Agency). Risk assessment guidance for Superfund, Volume I: human health evaluation manual[R]. Washington, D. C: Office of Emergency and Remedial Response, 1989. [34] MAN Y B, SUN X L, ZHAO Y G, et al. Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world’s most populated city[J]. Environment International, 2010, 36(6): 570-576. doi: 10.1016/j.envint.2010.04.014 [35] 陈云飞, 周金龙, 胡艳, 等. 新疆塔里木盆地东南缘红枣产地土壤重金属污染及健康风险评价[J]. 环境化学, 2022, 41(11): 3629-3639. CHEN Y F, ZHOU J L, HU Y, et al. Heavy metal pollution and health risk assessment of the jujube producing area on the southeastern margin of the Tarim Basin in Xinjiang[J]. Environmental Chemistry, 2022, 41(11): 3629-3639(in Chinese).
[36] 赵明升, 任丽红, 李刚, 等. 2018—2019年冬季天津和青岛PM2.5中重金属污染特征与健康风险评价 [J]. 环境科学, 2022, 43(12): 5376-5386. ZHAO M S, REN L H, LI G, et al. Pollution characteristics and health risk assessment of PM2.5 heavy metals in Tianjin and Qingdao in winter of 2018-2019[J]. Environmental Science, 2022, 43(12): 5376-5386(in Chinese).
[37] 肖冰, 薛培英, 韦亮, 等. 基于田块尺度的农田土壤和小麦籽粒镉砷铅污染特征及健康风险评价[J]. 环境科学, 2020, 41(6): 2869-2877. XIAO B, XUE P Y, WEI L, et al. Characteristics of Cd, As, and Pb in soil and wheat grains and health risk assessment of grain-Cd/As/Pb on the field scale[J]. Environmental Science, 2020, 41(6): 2869-2877(in Chinese).
[38] 李友平, 唐娅, 范忠雨, 等. 成都市大气环境VOCs污染特征及其健康风险评价[J]. 环境科学, 2018, 39(2): 576-584. LI Y P, TANG Y, FAN Z Y, et al. Pollution characteristics and health risk assessment of atmospheric VOCs in Chengdu[J]. Environmental Science, 2018, 39(2): 576-584(in Chinese).
[39] USEPA (United States Environmental Protection Agency). Screening Levels for chemical contaminants at superfund sites[R]. 2011. [40] USDOE (United States Department of Energy). The Risk Assessment Information System[R]. U. S. Department of Energy’s Oak Ridge Operations Office (ORO), 2011. [41] LUO X S, DING J, XU B, et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils[J]. Science of the Total Environment, 2012, 424: 88-96. doi: 10.1016/j.scitotenv.2012.02.053 [42] WHO (World Health Organization). World Health Report[R]. 2022. [43] NING Z P, LIU E G, YAO D J, et al. Contamination, oral bioaccessibility and human health risk assessment of thallium and other metal(loid)s in farmland soils around a historic Tl-Hg mining area[J]. Science of the Total Environment, 2021, 758: 143577. doi: 10.1016/j.scitotenv.2020.143577 [44] 李淑慧, 高志襄, 张婷. 基于RIVM模型评估湘江干流铜锈环棱螺重金属生物可给性及食用健康风[J]. 环境化学, 2023, 42(1): 20-28. doi: 10.7524/j.issn.0254-6108.2022090404 LI S H, GAO Z X, ZHANG T. Bioaccessibility and risk assessment of heavy metals in Bellamya aeruginosa from the main stream of Xiangjiang River using RIVM’s dispersion model [J]. Environmental Chemistry, 2023, 42(1): 20-28(in Chinese). doi: 10.7524/j.issn.0254-6108.2022090404