-
低温等离子体(non-thermal plasma, NTP)具有反应条件温和(常温常压)、适应性广、反应快速等优点,通过产生大量活性物种(O、·OH、O3等)将VOCs降解,受到了广泛关注,然而高的能耗及大量副产物生成限制了该技术工业化应用. 为了克服活性物种寿命短而导致的NTP降解VOCs效率不高、副产物生成的缺点,近年来,研究者开发了多种具有多孔结构的催化剂与NTP协同降解VOCs,通过延长污染物在放电区的停留时间,有效利用副产物O3产生原子氧、过氧自由基等,达到减少副产物的产生、提高能量密度、降低能耗、提高碳平衡等效果[1-7]. 已经研究的与NTP联合的催化剂包括铁电体材料、半导体催化剂、贵金属催化剂以及分子筛[8-11].
金属有机骨架(metal organic frameworks, MOFs)是一种由有机配体和金属离子或金属簇组合成的多孔催化吸附材料,由于其具有可调规整的孔道、大的比表面积和高的孔隙率,应用前景广泛. MOFs材料在获得一定能量时,由于轨道离域而呈现出半导体的特性[12],介质阻挡放电(dielectric barrier discharge, DBD)等离子体中高能电子的能量可达1—20 eV,可以提供足够的能量活化MOFs产生新的活性自由基(电子-空穴对),具有吸“拟光催化过程”和催化效果,从而促进污染物的降解[13];另外,MOFs材料高的比表面积使其具有优异的吸附性能,可有效延长VOCs在反应区的停留时间,提高处理效率,逐渐应用在等离子体和气体吸附中. 例如,Wang等[14]通过水热法制备了MIL-101(Cr)并用于吸附苯表现出良好的吸附性能;Bahri等[15]采用等离子体协同MIL-101、MIL-53材料降解甲苯,发现MOFs材料的加入可以提高甲苯的降解效果、降低副产物O3的生成. 因此,研制适合DBD体系的高性能MOFs催化剂,提高两者的协同作用效果,对于推动该技术工业化应用具有重要的意义.
MOF-74由二价过渡金属(硝酸盐、醋酸盐)和配体2,5-二羟基-对苯二甲酸合成(DOT),具有一维六角形孔洞结构和高密度“开放”金属位点,具有高比表面积、有机配体和金属离子可调性剂以及很好的稳定性,具有优异的电化学性能及光催化特性,在吸附分离、光电催化产氢、化学传感、烟气脱硝等领域受到广泛关注[16-18]. 例如,Chen等[16]采用微波辅助法合成的Ni-MOF-74对CO2吸附性能好:Feng等[8]将MOF-74(Mn-Co-Ni)催化剂与NTP协同应用于甲苯降解,相同条件下甲苯去除率提高了42.9%,并有效控制了副产物O3生成. 目前,将MOF-74材料与DBD协同降解VOCs还鲜有报道[8],催化剂引入DBD后在等离子体内较低温度下O2是否参与吸附活化为O-和O2-等参与催化反应的机理还不明晰.
本研究采用溶剂热法合成制备了Mn基MOF-74(Mn-MOF-74)材料,并通过改变配体为1, 4-苯二甲酸(TPA)制备了Mn-TPA-DMF多孔材料,将两种催化剂引入DBD等离子体降解甲苯气体. 采用XRD、FTIR、SEM、BET和XPS等表征技术对催化剂的结构进行分析,对比了两种Mn基MOFs材料加入DBD后甲苯的降解效果、副产物的形成,推测了DBD催化降解甲苯的反应机理.
Mn基金属有机骨架(MOFs)催化剂制备及介质阻挡放电(DBD)等离子体协同催化降解甲苯
Preparation of Mn-based metal-organic frameworks (MOFs) catalysts and its synergistic catalysis on toluene degradation with dielectric barrier discharge (DBD) plasma
-
摘要: 采用溶剂热合成法制备了Mn-MOF-74和Mn-TPA-DMF两种Mn基MOFs催化剂,并用XRD、FTIR、SEM、BET和XPS等对催化剂进行了表征. 采用催化剂与介质阻挡放电(DBD)等离子体反应器协同系统评估甲苯气体降解性能. 研究结果表明,采用DBD/Mn-MOF-74催化降解甲苯,当能量密度为830.57 J·L−1、氧气体积分数为4%时,甲苯降解率达97.3%,CO2选择性为49.4%,矿化度为72.8%,能量效率为5.77 g·kWh−1. 与单独DBD相比,Mn基MOF催化剂的引入提高了甲苯的去除率、CO2的选择性和碳平衡,有效抑制了副产物O3和NOx的生成(下降了约50%). 与Mn-TPA-DMF相比,Mn-MOF-74表现出更优越的等离子体协同催化性能. 结合催化剂的表征结果及性能评估,推测Mn基MOFs大的比表面积、表面吸附氧(Oads)、Mn多价态(Mn2+,Mn3+,Mn4+)之间的电荷循环转移是影响催化性能的关键因素.
-
关键词:
- 介质阻挡放电(DBD) /
- Mn-MOF-74 /
- 甲苯 /
- 表面吸附氧 /
- 等离子体催化系统.
Abstract: In this study, two Mn-based metal-organic frameworks (MOFs) catalysts, termed as Mn-MOF-74 and Mn-TPA-DMF, were prepared by solvothermal method, and were characterized by XRD, FTIR, SEM, BET and XPS. In addition, a synergistic system of catalyst and dielectric barrier discharge (DBD) plasma reactor was applied to evaluate the gas degradation performance of toluene. Our results show that the removal efficiency of toluene is 97.3%, the selectivity of CO2 is 49.4%, the degree of mineralization is 72.8%, and the efficiency of energy is 5.77 g·kWh−1, respectively, when the energy density is 830.57 J·L−1 and, the O2 volume fraction is 4% in the DBD+Mn-MOF-74 catalytic system. In comparison with DBD, the adding of Mn-based MOFs catalysts enhanced toluene removal efficiency effectively, as well as CO2 selectivity and carbon balance. Moreover, suppressed the byproducts, e.g., the yield of O3 and NOx decreased by about 50%. Besides, Mn-MOF-74 shows better plasma synergistic catalytic performance compared to Mn-TPA-DMF. On the basis of catalyst characterization and performance evaluation, we could infer that the key factors impacting catalytic performance for DBD catalysis are attributed to larger surface areas, more surface absorbed oxygen (Oads) , and charge cycle shift between polyvalent Mn (Mn2+, Mn3+, Mn4+).-
Key words:
- DBD /
- Mn-MOF-74 /
- toluene /
- surface absorbed oxygen /
- plasma-catalytic system.
-
表 1 Mn-MOF-74和Mn-TPA-DMF的比表面积和孔容分析
Table 1. BET surface area and pore volume analysis of Mn-MOF-74 and Mn-TPA-DMF
催化剂
Catalyst比表面积/(m2·g−1)
Specific surface area孔容/(cm3·g−1)
Pore volume平均孔径/nm
Average diameterMn-MOF-74 83.368 0.17630 8.460 Mn-TPA-DMF 29.123 0.02421 3.326 表 2 Mn-MOF-74和Mn-TPA-DMF各元素价态的组成
Table 2. Valence composition of the elements of Mn-MOF-74 and Mn-TPA-DMF
催化剂
Catalyst表面元素比Mn3+/(∑Mnn+)
Surface element ratio Mn3+/(∑Mnn+)Oads/Olatt Before After Before After Mn-MOF-74 0.63 0.62 1.23 8.60 Mn-TPA-DMF 0.62 0.60 0.16 6.28 -
[1] LEE J E, OK Y S, TSANG D C W, et al. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review [J]. Science of the Total Environment, 2020, 719: 137405. doi: 10.1016/j.scitotenv.2020.137405 [2] THEVENET F, SIVACHANDIRAN L, GUAITELLA O, et al. Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review [J]. Journal of Physics D:Applied Physics, 2014, 47(22): 224011. doi: 10.1088/0022-3727/47/22/224011 [3] SANITO R C, YOU S J, CHANG G M, et al. Effect of shell powder on removal of metals and volatile organic compounds (VOCs) from resin in an atmospheric-pressure microwave plasma reactor [J]. Journal of Hazardous Materials, 2020, 394: 122558. doi: 10.1016/j.jhazmat.2020.122558 [4] JIANG N, QIU C, GUO L J, et al. Plasma-catalytic destruction of xylene over Ag-Mn mixed oxides in a pulsed sliding discharge reactor [J]. Journal of Hazardous Materials, 2019, 369: 611-620. doi: 10.1016/j.jhazmat.2019.02.087 [5] WANG B W, CHI C M, XU M, et al. Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge [J]. Chemical Engineering Journal, 2017, 322: 679-692. doi: 10.1016/j.cej.2017.03.153 [6] ABOU SAOUD W, ASSADI A A, GUIZA M, et al. Synergism between non-thermal plasma and photocatalysis: Implicationsin the post discharge of ozone at a pilot scale in a catalytic fixed-bed reactor [J]. Applied Catalysis B:Environmental, 2019, 241: 227-235. doi: 10.1016/j.apcatb.2018.09.029 [7] 刘鑫, 刘建奇, 陈佳尧, 等. 催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性 [J]. 环境工程学报, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019 LIU X, LIU J Q, CHEN J Y, et al. Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma [J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1862-1871(in Chinese). doi: 10.12030/j.cjee.202109019
[8] FENG X B, CHEN C W, HE C, et al. Non-thermal plasma coupled with MOF-74 derived Mn-Co-Ni-O porous composite oxide for toluene efficient degradation [J]. Journal of Hazardous Materials, 2020, 383: 121143. doi: 10.1016/j.jhazmat.2019.121143 [9] YAO X H, ZHANG J, LIANG X S, et al. Plasma-catalytic removal of toluene over the supported Manganese oxides in DBD reactor: Effect of the structure of zeolites support [J]. Chemosphere, 2018, 208: 922-930. doi: 10.1016/j.chemosphere.2018.06.064 [10] WANG T, CHEN S, WANG H Q, et al. In-plasma catalytic degradation of toluene over different MnO2 polymorphs and study of reaction mechanism [J]. Chinese Journal of Catalysis, 2017, 38(5): 793-803. doi: 10.1016/S1872-2067(17)62808-0 [11] 尚超, 韦献革, 白敏冬, 等. 低温等离子体催化降解烟气中甲苯的研究 [J]. 中国环境科学, 2020, 40(9): 3714-3720. doi: 10.3969/j.issn.1000-6923.2020.09.001 SHANG C, WEI X G, BAI M D, et al. Degradation of toluene in flue gas by low temperature plasma catalysis [J]. China Environmental Science, 2020, 40(9): 3714-3720(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.09.001
[12] HENDON C H, TIANA D, WALSH A. Conductive metal-organic frameworks and networks: Fact or fantasy? [J]. Physical Chemistry Chemical Physics:PCCP, 2012, 14(38): 13120-13132. doi: 10.1039/c2cp41099k [13] ZHU X B, GAO X, QIN R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor [J]. Applied Catalysis B:Environmental, 2015, 170/171: 293-300. doi: 10.1016/j.apcatb.2015.01.032 [14] WANG D F, WU G P, ZHAO Y F, et al. Study on the copper(II)-doped MIL-101(Cr) and its performance in VOCs adsorption [J]. Environmental Science and Pollution Research, 2018, 25(28): 28109-28119. doi: 10.1007/s11356-018-2849-6 [15] BAHRI M, HAGHIGHAT F, ROHANI S, et al. Metal organic frameworks for gas-phase VOCs removal in a NTP-catalytic reactor [J]. Chemical Engineering Journal, 2017, 320: 308-318. doi: 10.1016/j.cej.2017.02.087 [16] CHEN C W, FENG X B, ZHU Q, et al. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture [J]. Inorganic Chemistry, 2019, 58(4): 2717-2728. doi: 10.1021/acs.inorgchem.8b03271 [17] NGUYEN H T H, NGUYEN O T K, TRUONG T, et al. Synthesis of imidazo[1, 5-a]pyridines via oxidative amination of the C(sp3)–H bond under air using metal–organic framework Cu-MOF-74 as an efficient heterogeneous catalyst [J]. RSC Advances, 2016, 6(42): 36039-36049. doi: 10.1039/C6RA00852F [18] YAN W J, GUO Z Y, XU H S, et al. Downsizing metal–organic frameworks with distinct morphologies as cathode materials for high-capacity Li–O2 batteries [J]. Materials Chemistry Frontiers, 2017, 1(7): 1324-1330. doi: 10.1039/C6QM00338A [19] ZHAO K M, XU Z Q, HE Z, et al. Vertically aligned MnO2 nanosheets coupled with carbon nanosheets derived from Mn-MOF nanosheets for supercapacitor electrodes [J]. Journal of Materials Science, 2018, 53(18): 13111-13125. doi: 10.1007/s10853-018-2562-3 [20] WANG L J, JIN Q, XIANG Y L, et al. Rational design of CoxMn3-xO4 embedded carbon composites from MOF-74 structure for boosted peroxymonosulfate activation: A dual pathway mechanism [J]. Chemical Engineering Journal, 2022, 435: 134877. doi: 10.1016/j.cej.2022.134877 [21] HU H P, LOU X B, LI C, et al. A thermally activated Manganese 1, 4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries [J]. New Journal of Chemistry, 2016, 40(11): 9746-9752. doi: 10.1039/C6NJ02179D [22] WANG S H, ZHU X L, MENG Q Y, et al. Gold interdigitated micro-immunosensor based on Mn-MOF-74 for the detection of Listeria monocytogens [J]. Biosensors and Bioelectronics, 2021, 183: 113186. doi: 10.1016/j.bios.2021.113186 [23] KIM S H, LEE Y J, KIM D H, et al. Bimetallic metal-organic frameworks as efficient cathode catalysts for Li-O2 batteries [J]. ACS Applied Materials & Interfaces, 2018, 10(1): 660-667. [24] ANBIA M, HOSEINI V. Enhancement of CO2 adsorption on nanoporous chromium terephthalate (MIL-101) by amine modification [J]. Journal of Natural Gas Chemistry, 2012, 21(3): 339-343. doi: 10.1016/S1003-9953(11)60374-5 [25] CAO H Q, WU X M, WANG G H, et al. Biomineralization strategy to α-Mn2O3 hierarchical nanostructures [J]. The Journal of Physical Chemistry C, 2012, 116(39): 21109-21115. doi: 10.1021/jp306984c [26] LV Z M, WANG H Y, CHEN C L, et al. Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent [J]. Journal of Colloid and Interface Science, 2019, 537: A1-A10. doi: 10.1016/j.jcis.2018.11.062 [27] FENG C, QIAO S S, GUO Y, et al. Adenine-assisted synthesis of functionalized F-Mn-MOF-74 as an efficient catalyst with enhanced catalytic activity for the cycloaddition of carbon dioxide [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 597: 124781. doi: 10.1016/j.colsurfa.2020.124781 [28] XIE S Z, QIN Q J, LIU H, et al. MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for low-temperature NH3-SCR and in situ DRIFTS study reaction mechanism [J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48476-48485. [29] LI Z, SUN D R, LIU W Q, et al. Simultaneous removal of mercury and 1, 2-dichlorobenzene from flue gas by Ru-based catalyst [J]. Fuel, 2022, 309: 122085. doi: 10.1016/j.fuel.2021.122085 [30] JIANG N, LU N, SHANG K F, et al. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas [J]. Environmental Science & Technology, 2013, 47(17): 9898-9903. [31] 王雪青, 黎欢毅, 王邦芬, 等. 等离子体场内CeO2催化降解甲醇的表面活性氧物种来源与作用研究 [J]. 环境科学学报, 2019, 39(8): 2725-2734. WANG X Q, LI H Y, WANG B F, et al. Sources and roles of surface reactive oxygen species over CeO2 catalysts for methanol oxidation in plasma [J]. Acta Scientiae Circumstantiae, 2019, 39(8): 2725-2734(in Chinese).
[32] LU N, LIU N, ZHANG C K, et al. CO2 conversion promoted by potassium intercalated g-C3N4 catalyst in DBD plasma system [J]. Chemical Engineering Journal, 2021, 417: 129283. doi: 10.1016/j.cej.2021.129283 [33] LEE B, KIM D W, PARK D W. Dielectric barrier discharge reactor with the segmented electrodes for decomposition of toluene adsorbed on bare-zeolite [J]. Chemical Engineering Journal, 2019, 357: 188-197. doi: 10.1016/j.cej.2018.09.104 [34] LI S J, DANG X Q, YU X, et al. The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review [J]. Chemical Engineering Journal, 2020, 388: 124275. doi: 10.1016/j.cej.2020.124275 [35] 赵珂, 宁平, 李凯, 等. Mn/Cu-BTC催化剂同时脱硫脱硝实验研究 [J]. 化工进展, 2020, 39(5): 1784-1791. doi: 10.16085/j.issn.1000-6613.2019-1317 ZHAO K, NING P, LI K, et al. Experimental study on simultaneous removal of SO2 and NO by Mn/Cu-BTC catalyst [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1784-1791(in Chinese). doi: 10.16085/j.issn.1000-6613.2019-1317
[36] 张先龙, 张新成, 胡晓芮, 等. Ce(x)Mn/TiO2-y催化剂低温NH3-SCR脱硝性能 [J]. 环境化学, 2021, 40(2): 632-641. doi: 10.7524/j.issn.0254-6108.2019092905 ZHANG X L, ZHANG X C, HU X R, et al. Ce(x)Mn/TiO2-y catalysts for NH3-SCR of NO at low temperature [J]. Environmental Chemistry, 2021, 40(2): 632-641(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092905
[37] ZHU R Y, MAO Y B, JIANG L Y, et al. Performance of chlorobenzene removal in a nonthermal plasma catalysis reactor and evaluation of its byproducts [J]. Chemical Engineering Journal, 2015, 279: 463-471. doi: 10.1016/j.cej.2015.05.043 [38] JIANG N, ZHAO Y H, QIU C, et al. Enhanced catalytic performance of CoOx-CeO2 for synergetic degradation of toluene in multistage sliding plasma system through response surface methodology (RSM) [J]. Applied Catalysis B:Environmental, 2019, 259: 118061. doi: 10.1016/j.apcatb.2019.118061 [39] CHANG T, WANG Y, WANG Y Q, et al. A critical review on plasma-catalytic removal of VOCs: Catalyst development, process parameters and synergetic reaction mechanism [J]. Science of the Total Environment, 2022, 828: 154290. doi: 10.1016/j.scitotenv.2022.154290 [40] MA J Z, WANG C X, HE H. Transition metal doped cryptomelane-type Manganese oxide catalysts for ozone decomposition [J]. Applied Catalysis B:Environmental, 2017, 201: 503-510. doi: 10.1016/j.apcatb.2016.08.050 [41] 周日宇, 王彬, 董发勤, 等. 电晕放电等离子体对头孢唑林钠的降解 [J]. 环境化学, 2019, 38(12): 2768-2779. doi: 10.7524/j.issn.0254-6108.2019061805 ZHOU R Y, WANG B, DONG F Q, et al. Degradation of cefazolin sodium by Corona discharge technology [J]. Environmental Chemistry, 2019, 38(12): 2768-2779(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061805
[42] 侯浩, 党小庆, 李世杰, 等. 低温等离子体耦合Co-Mn双金属催化剂降解三氯乙烯 [J]. 环境化学, 2023, 42(4): 1-11. doi: 10.7524/j.issn.0254-6108.2021111102 HOU H, DANG X Q, LI S J, et al. Removal of trichloroethylene by non-thermal plasma combined with Co-Mn bimetallic catalyst [J]. Environmental Chemistry, 2023, 42(4): 1-11(in Chinese). doi: 10.7524/j.issn.0254-6108.2021111102