-
水体富营养化会带来水华、嗅味、水生生态系统恶化等问题,是目前水库面临的最主要的挑战之一[1-3],随着政府部门的重视,造成水体富营养化的外源因素得到了有效的控制,但水库的内部营养负荷对水体的富营养化仍有着重要的影响[4-5]. 底泥作为内部营养元素的主要蓄积地,其营养元素的浓度水平和空间分布直接影响着水库的水质及整个水生生态系统[6]. 单宝庆等[7]采用沉积物质量准则、有机污染指数和有机氮指数对我国东部淡水流域的沉积物质量进行评价,发现沉积物受氮、磷污染严重,其质量问题亟待解决. 孙庆业等[8]采集了董铺水库沉积物样本,通过计算氮磷综合污染指数和有机污染指数发现评价库区有88.9%的河流断面沉积物属于清洁-中度污染. 黄廷林等[9]通过TOC、TN、TP之间的相互关系,推测出纤维束植物碎屑是周村水库沉积物有机质的主要来源. 水库沉积物作为水体营养元素污染重要的汇与源[10],通过分析其中营养元素含量及生态风险评价,对保障水库供水安全和生态系统修复有重要的指导意义[11].
湖漫水库是温岭市最大的集中式饮用水源水库,是温岭市区和周边石桥镇、城南镇、箬横镇、松门镇等区域的饮用水水源,供应20余万市民生活用水[12],同时担负防洪、灌溉、养殖等作用[13]. 鉴于湖漫水库在浙江省温岭市重要地位,本文率先研究营养盐垂向分布特征与生态风险评价,一方面填补水库建成后沉淀淤积引起营养盐空间变化规律空白;另一方面为考察蓝雪春等[14-15]指出湖漫水库自2011—2019年水质富营养化状态逐年升高是否与内源污染关联性;同时为政府管理部门对水库清淤底泥处置[16]与清淤经费估算等决策提供基础性依据.
本研究采集湖漫水库表、中、底层沉积物,测定其中TP、TN、TOC含量,分析营养元素分布特征;并采用沉积物质量准则、综合污染指数、有机污染指数和有机氮指数评价水库沉积物的生态风险等级;最后通过营养元素之间的相关性分析,探究主要污染来源.
浙江省温岭湖漫水库沉积物中营养盐分布及风险评价
Distribution and risk assessment of nutrients in sediments of Human Reservoir in Wenling City, Zhejiang Province
-
摘要: 湖漫水库是温岭市最大的集中式饮用水源水库,水质富营养化状态逐年升高的趋势亟需系统调查该水库内源污染现状. 以湖漫水库为研究对象,采集表、中、底层沉积物,根据TP、TN、TOC等影响水库富营养化因素,进行营养元素空间分布特征分析和生态风险评价,通过营养元素间的相互关系初步探究水库主要污染源. 结果表明,湖漫水库表层沉积物中TP、TN、TOC均值分别为516.43 mg·kg−1、1690 mg·kg−1、1.28%. 营养元素主要在大坝附近、库区中心、阮岙村和横溪村两个支流处富集;随着深度的增加,浓度逐渐降低,底层沉积物中TP含量为表层的77%,TN和TOC含量为表层的62%;水库中有64.3%的表层沉积物处于重度营养盐污染,主要为氮,尤其是有机氮污染,且存在可能释放的风险;该水库沉积物营养盐污染经解析主要由浮游动物、浮游植物和藻类等水生生物的排泄物及残骸逐渐在表层沉积物积累引起.Abstract: Human reservoir is the largest drinking water reservoirs in Wenling City. It was urgent to investigate systematically the internal pollution of the reservoir in view of the increasing trend of water eutrophication. The spatial distribution characteristics of nutrient elements and ecological risk evaluation were carried out by sampling the surface, middle and bottom sediments of the reservoir and exploring the influencing factors of eutrophication, such as the contents of TP, TN, TOC. The main eutrophication sources of the reservoir were primarily investigated through the correlation between nutrient elements. The results showed that the mean concentrations of TP, TN and TOC in surface sediment were 516.43 mg·kg−1, 1690 mg·kg−1 and 1.28%, respectively. The nutrients were mainly enriched near the dam, in the center of the reservoir, and in the two tributaries of Ruanao village and Hengxi village. The nutrient concentration decreased gradually with the increase of depth. The TP content in bottom sediments was 77% of that in the surface layer, and TN and TOC contents were 62% of those in the surface sediments. Additionally, 64.3% of the surface sediments in the reservoir were seriously polluted by nutrients (especially organic nitrogen), and there was a risk of possible release. According to the correlation and ratio between nutrients, it was speculated that the nutrient pollution of sediments in this reservoir was mainly caused by the gradual accumulation of excreta and debris from aquatic organisms such as zooplankton, phytoplankton and algae on the surface sediment.
-
Key words:
- sediment /
- eutrophication /
- distribution characteristics /
- risk assessment.
-
表 1 湖漫水库采样点位置
Table 1. The sampling location in Human reservoir
点位
Sampling site经度(°)
Longitude纬度(°)
Latitude所属区域
Sampling areaD1 28.354350 121.408059 横溪村 D2 28.356668 121.409816 横溪村 D3 28.352161 121.414641 下洞桥村 D4 28.356176 121.420027 马步溪水库 D5 28.357241 121.412904 库区 D6 28.358084 121.414936 库区 D7 28.360416 121.418762 库心 D8 28.363027 121.420298 库心 D9 28.366514 121.419453 库心 D10 28.367967 121.418594 库区 D11 28.367172 121.421153 库区 D12 28.368954 121.425226 阮岙村 D13 28.371008 121.422957 库区 D14 28.372602 121.422118 大坝附近 表 2 沉积物质量评价指南
Table 2. Manual for the sediment assessment
生态毒性效应
Ecotoxicological toxicityTN/(mg·kg−1) TP/(mg·kg−1) TO(mg·kg−1) 安全级别 <550 <600 <10 最低级别 550—4800 600—2000 10—100 严重级别 ≥4800 ≥2000 ≥100 表 3 沉积物综合污染程度分级标准
Table 3. Standard of comprehensive pollution level in sediments
污染程度
Pollution levelSTN STP FF 等级
Grade未受污染 <1.0 <0.5 ≤1.0 1 轻度污染 1.0—1.5 0.5—1.0 1.0—1.5 2 中度污染 1.5—2.0 1.0—1.5 1.5—2.0 3 重度污染 ≥2.0 ≥1.5 ≥2.0 4 表 4 沉积物有机指数及有机氮评价标准
Table 4. Sediment evaluation standards by organic index and organic nitrogen index
有机指数评价标准
Assessment standards of OPI<0.05 0.05—0.20 0.20—0.50 ≥0.50 清洁 轻度污染 中度污染 重度污染 有机氮评价标准
Assessment standards of ONI<0.0033 0.0033—0.066 0.066—0.133 >0.133 清洁 轻度污染 中度污染 重度污染 表 5 国内其他水库沉积物营养元素含量对比
Table 5. Concentrations of nutrients in sediments of other reservoir in China
所属省份
Province湖库名称
Reservoir沉积物类型
SedimentTN/(mg·kg−1) TP/(mg·kg−1) TOC/% 文献来源
Reference浙江省 分水江水库 表中底层 1710 820 1.56 张明等[26] 湖北省 黄柏河水库 表层 1500.4 8578 2.69 王雨春等[27] 江西省 柘林水库 表层 1832.6 657.5 3.2 李学梅等[28] 广东省 白盆珠水库 表层 2550 140 0.88 陈建耀等[23] 湖北省 玄庙观水库 表层 1209.5 8133 3.03 王雨春等[29] 河北省 潘家口水库 表层 4765.1 946.5 / 王洪伟等[30] 广东省 清林径水库 表层 1611 218 1.12 兰建洪等[31] 广东省 茜坑水库 表层 3442 1648 1.477 黄廷林等[32] 陕西省 西北某小型水库 表层 460 170 1.168 黄廷林等[33] 浙江省 长潭水库 表层 1460 430 1.367 陈光才等[20] 表 6 湖漫水库表层沉积物综合污染程度评价
Table 6. Pollution assessment of surface sediments in Human reservoir
采样点
Sampling siteTN评价指数 TP评价指数 综合污染指数 STN 等级
GradeSTP 等级
GradeFF 等级
GradeD1 3.75 4 1.40 3 3.21 4 D2 2.60 4 1.10 3 2.25 4 D3 1.54 3 0.82 2 1.37 2 D4 1.61 3 1.03 3 1.47 2 D5 1.24 2 0.96 2 1.17 2 D6 0.93 1 0.62 2 0.86 1 D7 3.67 4 1.78 4 3.23 4 D8 2.33 4 1.07 3 2.04 4 D9 1.81 3 1.20 3 1.66 3 D10 2.81 4 1.08 3 2.41 4 D11 3.30 4 1.20 3 2.82 4 D12 3.09 4 1.34 3 2.69 4 D13 3.61 4 1.65 4 3.16 4 D14 3.03 4 1.19 3 2.61 4 平均值 2.52 4 1.17 3 2.21 4 表 7 湖漫水库表层沉积物有机指数和有机氮指数
Table 7. Organic index and organic nitrogen index of surface sediments in Human reservoir
D1 D2 D3 D4 D5 D6 D7 有机氮指数ONI 0.24 0.17 0.10 0.10 0.08 0.06 0.23 有机指数OPI 0.39 0.24 0.07 0.08 0.04 0.02 0.42 D8 D9 D10 D11 D12 D13 D14 有机氮指数ONI 0.15 0.11 0.18 0.21 0.20 0.23 0.19 有机指数OPI 0.19 0.14 0.28 0.31 0.30 0.45 0.31 表 8 沉积物中TOC与TP、TN的相关性矩阵
Table 8. Correlation matrix between TP,TN and TOC
TOC TP TN TOC 1.000 TP 0.863 1.000 TN 0.955 0.857 1.000 表 9 主成分载荷矩阵表
Table 9. Principle component load matrix
分析指标
Parameters主成分系数
CoefficientTOC 0.976 TP 0.940 TN 0.974 表 10 沉积物中TN/TP、TOC/TN、TOC/TP比值
Table 10. The ratio of TN/TP,TOC/TN,TOC/TP
点位
Sampling siteTN/TP TOC/TN TOC/TP 表层 中层 底层 表层 中层 底层 表层 中层 底层 D1 4.07 3.08 3.83 6.53 6.97 5.80 26.59 21.45 22.20 D7 3.13 3.13 2.75 7.37 7.12 8.57 23.08 22.28 23.56 D12 3.51 2.89 2.53 7.38 7.90 7.91 25.88 22.80 20.00 D14 3.88 3.20 2.58 7.92 7.24 7.22 30.75 23.15 26.32 -
[1] ZHANG W Q, JIN X, MENG X, et al. Phosphorus transformations at the sediment–water interface in shallow freshwater ecosystems caused by decomposition of plant debris [J]. Chemosphere, 2018, 201: 328-334. doi: 10.1016/j.chemosphere.2018.03.006 [2] von SPERLING E, Da SILVA FERREIRA A C, NUNES LUDOLF GOMES L. Comparative eutrophication development in two Brazilian water supply reservoirs with respect to nutrient concentrations and bacteria growth [J]. Desalination, 2008, 226(1/2/3): 169-174. [3] 丁润楠, 姚晓龙, 傅大放, 等. 中国东部湖泊有机氮浓度时空特征及影响因素 [J]. 环境科学与技术, 2021, 44(6): 35-42. DING R N, YAO X L, FU D F, et al. Spatial and seasonal characteristics of organic nitrogen concentrations in lakes of Eastern China and its influencing factors [J]. Environmental Science & Technology, 2021, 44(6): 35-42(in Chinese).
[4] WEN S L, WANG H W, WU T, et al. Vertical profiles of phosphorus fractions in the sediment in a chain of reservoirs in North China: Implications for pollution source, bioavailability, and eutrophication [J]. Science of the Total Environment, 2020, 704: 135318. doi: 10.1016/j.scitotenv.2019.135318 [5] 马腾飞, 罗汉金, 李志敏, 等. 水源水库富营养化趋势分析及预警模型构建 [J]. 环境科学与技术, 2020, 43(5): 145-153. MA T F, LUO H J, LI Z M, et al. Eutrophication trend analysis and forewarning model construction of water source reservoirs [J]. Environmental Science & Technology, 2020, 43(5): 145-153(in Chinese).
[6] BREUNING-MADSEN H, LYNGSIE G, AWADZI T W. Sediment and nutrient deposition in Lake Volta in Ghana due to Harmattan dust [J]. CATENA, 2012, 92: 99-105. doi: 10.1016/j.catena.2011.11.018 [7] ZHANG W Q, JIN X, LIU D, et al. Assessment of the sediment quality of freshwater ecosystems in Eastern China based on spatial and temporal variation of nutrients [J]. Environmental Science and Pollution Research, 2017, 24(23): 19412-19421. doi: 10.1007/s11356-017-9532-1 [8] 于坤, 张坤, 孙庆业, 等. 董铺水库及入库河流表层沉积物污染状况评价 [J]. 生态环境学报, 2019, 28(10): 2045-2052. YU K, ZHANG K, SUN Q Y, et al. Assessment of surface sediment pollution in Dongpu Reservoir and its inflow rivers [J]. Ecology and Environment Sciences, 2019, 28(10): 2045-2052(in Chinese).
[9] 黄廷林, 刘飞, 史建超. 水源水库沉积物中营养元素分布特征与污染评价 [J]. 环境科学, 2016, 37(1): 166-172. HUANG T L, LIU F, SHI J C. Distribution characteristics and pollution status evaluation of sediments nutrients in a drinking water reservoir [J]. Environmental Science, 2016, 37(1): 166-172(in Chinese).
[10] 张明, 唐访良, 张伟, 等. 杭州青山水库沉积物中多环芳烃的垂直分布、来源及潜在生态风险 [J]. 地球与环境, 2020, 48(4): 405-412. doi: 10.14050/j.cnki.1672-9250.2020.48.065 ZHANG M, TANG F L, ZHANG W, et al. Vertical profile, source and potential ecological risk of polycyclic aromatic hydrocarbons in sediment cores from the Qingshan Reservoir of Hangzhou [J]. Earth and Environment, 2020, 48(4): 405-412(in Chinese). doi: 10.14050/j.cnki.1672-9250.2020.48.065
[11] 叶宏萌, 袁旭音, 李国平, 等. 闽北建溪流域表层沉积物营养元素分布特征及生态风险评价 [J]. 环境化学, 2018, 37(11): 2481-2488. doi: 10.7524/j.issn.0254-6108.2017121801 YE H M, YUAN X Y, LI G P, et al. Distribution and ecological risk assessment of nutrient elements in surface sediments of Jianxi Watershed in northern Fujian [J]. Environmental Chemistry, 2018, 37(11): 2481-2488(in Chinese). doi: 10.7524/j.issn.0254-6108.2017121801
[12] 蓝雪春, 张玲. 湖漫水库面源污染特征解析 [J]. 环境污染与防治, 2022, 44(8): 1042-1045,1053. LAN X C, ZHANG L. Characteristics analysis of nonpoint source pollution in Human Reservoir [J]. Environmental Pollution and Control, 2022, 44(8): 1042-1045,1053(in Chinese).
[13] 李其峰. 基于典型入库径流的水库供水预警研究: 以温岭市湖漫水库为例 [J]. 浙江水利科技, 2017, 45(1): 64-68,72. LI Q F. Study on the warning of water supply for the reservoir based on the typical reservoir runoff [J]. Zhejiang Hydrotechnics, 2017, 45(1): 64-68,72(in Chinese).
[14] 蓝雪春, 张玲. 湖漫水库面源污染源强分析 [J]. 水电能源科学, 2022, 40(9): 79-81,133. LAN X C, ZHANG L. Analysis of nonpoint source pollution intensity of human reservoir [J]. Water Resources and Power, 2022, 40(9): 79-81,133(in Chinese).
[15] 郑珍芝, 王文初, 吴星星. 温岭市湖漫水库水质状况与污染防治对策分析 [J]. 能源环境保护, 2019, 33(3): 60-64. ZHENG Z Z, WANG W C, WU X X. Water quality status and pollution prevention measures of Human Reservoir in Wenling [J]. Energy Environmental Protection, 2019, 33(3): 60-64(in Chinese).
[16] 范成新, 钟继承, 张路, 等. 湖泊底泥环保疏浚决策研究进展与展望 [J]. 湖泊科学, 2020, 32(5): 1254-1277. doi: 10.18307/2020.0506 FAN C X, ZHONG J C, ZHANG L, et al. Research progress and prospect of environmental dredging decision-making of lake sediment [J]. Journal of Lake Sciences, 2020, 32(5): 1254-1277(in Chinese). doi: 10.18307/2020.0506
[17] 梁佳文, 阳涛, 韩雪, 等. 城市河道底泥疏浚适宜深度初步研究: 以伊通河为例 [J]. 环境生态学, 2020(11): 81-90. LIANG J W, YANG T, HAN X, et al. Preliminary research on the appropriate depth of sediment dredging in urban river: Case study on Yitong River [J]. Environmental Ecology, 2020(11): 81-90(in Chinese).
[18] 王亚平, 黄廷林, 周子振, 等. 金盆水库表层沉积物中营养盐分布特征与污染评价 [J]. 环境化学, 2017, 36(3): 659-665. doi: 10.7524/j.issn.0254-6108.2017.03.2016071305 WANG Y P, HUANG T L, ZHOU Z Z, et al. Distribution and pollution evaluation of nutrients in surface sediments of Jinpen Reservoir [J]. Environmental Chemistry, 2017, 36(3): 659-665(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.03.2016071305
[19] ZHANG Z B, LV Y F, ZHANG W, et al. Phosphorus, organic matter and nitrogen distribution characteristics of the surface sediments in Nansi Lake, China [J]. Environmental Earth Sciences, 2015, 73(9): 5669-5675. doi: 10.1007/s12665-014-3821-5 [20] 张涵丹, 党宁, 林雪锋, 等. 长潭水库水体沉积物营养盐分布特征及其污染评价 [J]. 水土保持研究, 2023, 30(2): 438-443,450. doi: 10.13869/j.cnki.rswc.2023.02.041 ZHANG H D, DANG N, LIN X F, et al. Distribution characteristics of nutrients and pollution status evaluation of sediments in changtan reservoir [J]. Research of Soil and Water Conservation, 2023, 30(2): 438-443,450(in Chinese). doi: 10.13869/j.cnki.rswc.2023.02.041
[21] 王慎, 张思思, 许尤, 等. 不同水温分层水库沉积物间隙水营养盐垂向分布与细菌群落结构的关系 [J]. 环境科学, 2019, 40(6): 2753-2763. WANG S, ZHANG S S, XU Y, et al. Relationship between the vertical distribution of nutrients and bacterial community structures in sediment interstitial waters of stratified reservoirs with different water temperatures [J]. Environmental Science, 2019, 40(6): 2753-2763(in Chinese).
[22] 夏建东, 庞燕, 高亚萍, 等. 城市化对甘肃省牛谷河沉积物氮磷分布的影响 [J]. 环境科学与技术, 2020, 43(1): 45-54. XIA J D, PANG Y, GAO Y P, et al. Effect of urbanization on distribution of nitrogen and phosphorus in sediments of Niugu River in Gansu Province [J]. Environmental Science & Technology, 2020, 43(1): 45-54(in Chinese).
[23] 何宜颖, 陈建耀, 高磊, 等. 惠州白盆珠水库沉积物营养元素时空变化特征及源解析 [J]. 生态环境学报, 2020, 29(7): 1419-1426. HE Y Y, CHEN J Y, GAO L, et al. Spatial and temporal variations of sediment nutrients and relevant sources identification in baipenzhu reservoir, Guangdong Province [J]. Ecology and Environment Sciences, 2020, 29(7): 1419-1426(in Chinese).
[24] ZHU Y Y, JIN X, TANG W Z, et al. Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China [J]. Journal of Environmental Sciences, 2019, 76: 319-328. doi: 10.1016/j.jes.2018.05.024 [25] 陈小华, 钱晓雍, 李小平, 等. 洱海湖心区沉积柱芯营养盐垂向分布及时间演化特征 [J]. 生态环境学报, 2016, 25(10): 1693-1698. CHEN X H, QIAN X Y, Li X P, et al. The vertical distributions and temporal evolution characteristics and of nutrient concenctration in the sediment core at the center of Lake Erhai [J]. Ecology and Environmental Sciences, 2016, 25(10): 1693-1698(in Chinese).
[26] 张明, 唐访良, 姚建良, 等. 杭州分水江水库沉积物中碳、氮、磷的分布及污染评价[C]//中国环境科学学会2022年科学技术年会论文集(三), 2022: 436-442. ZHANG M, TANG F L, YAO J L, et al. Distribution and pollution assessment of carbon, nitrogen and phosphorus in sediments of Fenshuijiang Reservoir, Hangzhou[C]//Proceedings of the 2022 Science and Technology Annual Meeting of the Chinese Society of Environmental Sciences, 2022: 436-442(in Chinese).
[27] 包宇飞, 胡明明, 王殿常, 等. 黄柏河梯级水库沉积物营养盐与重金属分布特征及污染评价 [J]. 生态环境学报, 2021, 30(5): 1005-1016. BAO Y F, HU M M, WANG D C, et al. Distribution and pollution assessment of nutrients and heavy metals in sediments of the cascade reservoirs in huangbai river [J]. Ecology and Environment Sciences, 2021, 30(5): 1005-1016(in Chinese).
[28] 孟子豪, 杨德国, 陈康, 等. 柘林水库表层沉积物氮、磷、有机质的时空分布及污染评价 [J]. 环境化学, 2023, 42(1): 138-149. doi: 10.7524/j.issn.0254-6108.2022080103 MENG Z H, YANG D G, CHEN K, et al. Temporal-spatial distribution and pollution assessment of nitrogen, phosphorus and organic matter in surface sediments of Zhelin Reservoir [J]. Environmental Chemistry, 2023, 42(1): 138-149(in Chinese). doi: 10.7524/j.issn.0254-6108.2022080103
[29] 包宇飞, 李姗泽, 王雨春, 等. 磷矿背景区水库沉积物碳氮磷空间分布及污染评价分析[C]//水库大坝和水电站建设与运行管理新进展. 北京: 中国水利水电出版社, 2022: 781-788. BAO Y F, LI S Z, WANG Y C, et al. Spatial distribution and pollution assessment of carbon, nitrogen and phosphorus in reservoir sediments in phosphate rock background areas[C]//New progress in the construction and operation management of reservoir DAMS and hydropower stations. Beijing: China Waterpower Press, 2022: 781-788(in Chinese).
[30] 王洪伟, 王少明, 张敏, 等. 春季潘家口水库沉积物-水界面氮磷赋存特征及迁移通量 [J]. 中国环境科学, 2021, 41(9): 4284-4293. WANG H W, WANG S M, ZHANG M, et al. Occurrence characteristics and transport fluxes of nitrogen and phosphorus at sediment-water interface of Panjiakou Reservoir in spring [J]. China Environmental Science, 2021, 41(9): 4284-4293(in Chinese).
[31] 兰建洪, 刘丰, 郭晓玮, 等. 清林径水库表层沉积物营养盐分布特征及污染评价 [J]. 中国水利水电科学研究院学报, 2021, 19(2): 269-275. LAN J H, LIU F, GUO X W, et al. Pollution characteristics and evaluation of nutrients in surface sediments of Qinglinjing Reservoir [J]. Journal of China Institute of Water Resources and Hydropower Research, 2021, 19(2): 269-275(in Chinese).
[32] 王斌, 黄廷林, 翟振起, 等. 水源水库沉积物碳氮磷分布特征及污染评价 [J]. 环境化学, 2023, 42(4): 1304-1312. doi: 10.7524/j.issn.0254-6108.2021112205 WANG B, HUANG T L, ZHAI Z Q, et al. Distribution characteristics of carbon, nitrogen and phosphorus in sediments of water sourcereservoir and pollution assessment [J]. Environmental Chemistry, 2023, 42(4): 1304-1312(in Chinese). doi: 10.7524/j.issn.0254-6108.2021112205
[33] 黄道军, 薛睿康, 李凯, 等. 西北某水库沉积物污染特征与评价 [J]. 西安建筑科技大学学报(自然科学版), 2021, 53(1): 103-108. HUANG D J, XUE R K, LI K, et al. Characteristics and evaluation of pollution in sediments of a reservoir in Northwest China [J]. Journal of Xi’an University of Architecture & Technology, 2021, 53(1): 103-108(in Chinese).
[34] 唐永杰, 夏婧业, 陈雅娟, 等. 独流减河水体及沉积物质量评价 [J]. 中国科学院大学学报, 2019, 36(4): 537-544. TANG Y J, XIA J Y, CHEN Y J, et al. Quality assessment of water and sediment in Duliujianhe River [J]. Journal of University of Chinese Academy of Sciences, 2019, 36(4): 537-544(in Chinese).
[35] 余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐的形态分布特征与评价 [J]. 环境科学, 2010, 31(4): 961-968. YU H, ZHANG W B, LU S Y, et al. Spatial distribution characteristics of surface sediments nutrients in Lake Hongze and their pollution status evaluation [J]. Chinese Journal of Environmental Science, 2010, 31(4): 961-968(in Chinese).
[36] 刘坤, 王仕禄, 檀迪, 等. 乌江流域三个梯级水库氮磷形态的比较研究 [J]. 地球与环境, 2022, 50(6): 821-830. doi: 10.14050/j.cnki.1672-9250.2022.50.037 LIU K, WANG S L, TAN D, et al. Comparative study on nitrogen and phosphorus species of three cascade reservoirs in Wujiang River Basin [J]. Earth and Environment, 2022, 50(6): 821-830(in Chinese). doi: 10.14050/j.cnki.1672-9250.2022.50.037
[37] 冀峰, 王国祥, 韩睿明, 等. 无锡市农村黑臭河流沉积物营养盐垂向分布与污染特征分析 [J]. 环境工程学报, 2016, 10(7): 3462-3470. JI F, WANG G X, HAN R M, et al. Vertical distribution and pollution characteristics of nutrient in sediment of rural malodorous black river in Wuxi City, China [J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3462-3470(in Chinese).
[38] 单保庆, 菅宇翔, 唐文忠, 等. 北运河下游典型河网区水体中氮磷分布与富营养化评价 [J]. 环境科学, 2012, 33(2): 352-358. doi: 10.13227/j.hjkx.2012.02.017 SHAN B Q, JIAN Y X, TANG W Z, et al. Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment in downstream river network areas of north canal river watershed [J]. Chinese Journal of Environmental Science, 2012, 33(2): 352-358(in Chinese). doi: 10.13227/j.hjkx.2012.02.017
[39] YUAN H Z, TAI Z Q, LI Q, et al. Characterization and source identification of organic phosphorus in sediments of a hypereutrophic lake [J]. Environmental Pollution, 2020, 257: 113500. doi: 10.1016/j.envpol.2019.113500 [40] MEYERS P A. Preservation of elemental and isotopic source identification of sedimentary organic matter [J]. Chemical Geology, 1994, 114(3/4): 289-302.